

# Environmental

Proficiency Testing and Reference Materials

2015-2016

GLOBAL CATALOG





# We are pleased to present the 2015/2016 ERA Environmental Product Catalog.

With over 50 years of market leadership, Waters is committed to the development, production, and manufacture of the highest quality consumable products to solve our customers' most difficult challenges and enable continued success.

We are driven by our core mission: to develop enabling technologies that are the industry standard for performance, reproducibility, and quality. At ERA, we are dedicated to setting the industry standard for helping laboratories prove and improve data defensibility by delivering the highest quality Proficiency Testing experience.

With our comprehensive list of globally recognized accreditations, including ISO 9001, ISO/IEC Guide 34, ISO/IEC 17043, and ISO/IEC 17025 you can be assured that we have independent oversight of our internal processes. You will receive the best products available — allowing you to meet or exceed your laboratories' quality objectives time-and-time again. To learn more about how we can help you achieve your objectives for quality, variety, and reliability, visit www.eraqc.com.

Michael J. Yelle

Vice President, Consumables Business Unit

Waters Corporation

refile Yelle

Milford, MA, U.S.A.

#### **CONTENTS**

| prof  | ICIENCY TESTING SCHEME SCHEDULE 2015/2016                                                                                                                                                                                                                                | 6–7 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| prop  | ucts                                                                                                                                                                                                                                                                     |     |
|       | Water Pollution  Matrices with high concentrations of analytes for testing water pollution or wastewater. Standards are based on requirements of the United States Environmental Protection Agency Clean Water Act and may be used to satisfy PT requirements worldwide. | 10  |
|       | Water Supply                                                                                                                                                                                                                                                             | 24  |
| •     | Microbiology  Matrices with low and high concentrations of analytes for testing bacteria in drinking water and wastewater.  Samples are delivered as lyophilized pellets in a glass vial with phosphate buffer dilution blank.                                           | 32  |
| •     | Soil                                                                                                                                                                                                                                                                     | 36  |
|       | Underground Storage Tank (UST)  ERA's Underground Storage Tank (UST) products in water and soil matrices are purposefully designed to meet accreditation requirements for Petroleum Hydrocarbons analysis in various jurisdictions.                                      | 46  |
| •     | Air & Emissions                                                                                                                                                                                                                                                          | 52  |
|       | Radiochemistry                                                                                                                                                                                                                                                           | 58  |
|       | Low-Level CRMs  Matrices with low concentrations of analytes for testing water supply, drinking water, water pollution, wastewater, or ground water.                                                                                                                     | 64  |
|       | Custom Standards Standards manufactured to unique specifications available with a range of analytes, concentrations, and matrices.                                                                                                                                       | 72  |
|       | Calibration Standards                                                                                                                                                                                                                                                    | 76  |
| •     | $\label{eq:Reagents} \textbf{Reagents}.$ High purity reagents for environmental analysis intended for laboratory and industrial procedures. Production lot volumes available from $0.5L-1000L.$                                                                          | 80  |
| INDE  |                                                                                                                                                                                                                                                                          |     |
|       | Product Index                                                                                                                                                                                                                                                            |     |
| כו חכ | E A DV                                                                                                                                                                                                                                                                   | 00  |











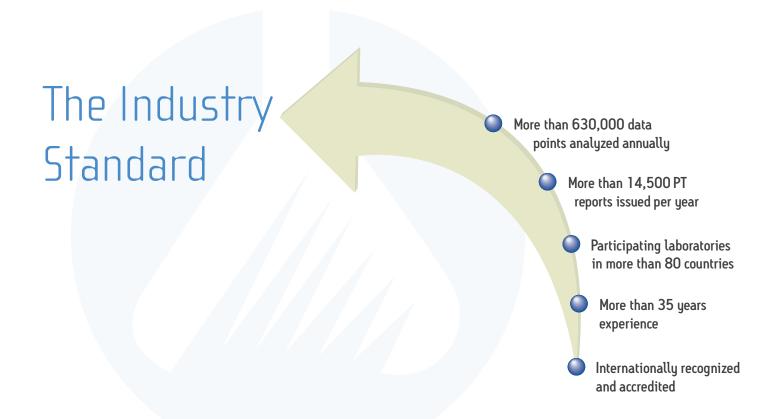


# For More Than 35 Years, the Industry Standard

# Dependable Quality and Experience You Can Trust

We understand how important Proficiency Testing (PT) is to your accreditation. Your accreditation is your license to do business.

We also understand that quality goes beyond simply being accredited.


Your customers' trust in the defensibility of the data you provide is fundamental to the success of your laboratory. That's why we are focused on providing you with purposefully designed, enabling tools and services to help you:

- Continuously improve the reliability of data you deliver to your customers
- Cost-effectively meet your accreditation goals

That's why more laboratories trust ERA as their partner in data defensibility, and why ERA has been the Industry Standard for over 35 years.

## Your Partner in Data Defensibility

- Expert quidance for every step of the PT process
- Help in understanding and navigating the myriad of regulatory requirements
- Greater confidence in your results
- Single source for your PT and Certified Reference Materials



## **QuiK Response PT**

Critical evaluations are just that — critical. ERA's QuiK Response™ PTs are on demand PTs that return your final results in just two business days of entering your data. With QuiK Response, gone are the days of waiting for the PT closing date and then waiting weeks for final results.

#### No wondering. No worries. Just results. Fast.

If you need to quickly demonstrate corrective action or confirm a new method, and you cannot wait for a regularly scheduled PT scheme, then speak with your ERA Customer Service Representative or an authorized sales partner about QuiK Response PTs.







REFERENCE MATERIAL PRODUCER CERTIFICATE NO. 1539.03

#### ISO/IEC 17043:2010



PROFICIENCY TESTING PROVIDER CERTIFICATE NO. 1539.01

#### ISO/IEC 17025:2005



CHEMICAL TESTING LABORATORY CERTIFICATE NO. 1539.02



ISO 9001:2008 CERTIFICATE NO. 10551

# 2015 PROFICIENCY TESTING SCHEME SCHEDULE



www.eraqc.com

| Water | Water Supply |       |              |  |
|-------|--------------|-------|--------------|--|
|       | Scheme #     | Opens | Closes       |  |
| Q     | WS 222       | Jan 5 | Feb 19       |  |
|       | WS 223       | Feb 9 | Mar 26       |  |
|       | WS 224       | Mar 2 | Apr 16       |  |
| Q     | WS 225       | Apr 6 | May 21       |  |
|       | WS 226       | May 4 | Jun 18       |  |
|       | WS 227       | Jun 8 | Jul 23       |  |
| Q     | WS 228       | Jul 7 | Aug 21       |  |
|       | WS 229       | Aug 3 | Sep 17       |  |
|       | WS 230       | Sep 8 | Oct 23       |  |
| Q     | WS 231       | Oct 5 | Nov 19       |  |
|       | WS 232       | Nov 6 | Dec 21       |  |
|       | WS 233       | Dec 7 | Jan 21, 2016 |  |

| Water | Pollution (Includi | ng UST in Water) |              |
|-------|--------------------|------------------|--------------|
|       | Scheme #           | Opens            | Closes       |
| Q     | WP 240             | Jan 12           | Feb 26       |
|       | WP 241             | Feb 16           | Apr 2        |
|       | WP 242             | Mar 9            | Apr 23       |
| Q     | WP 243             | Apr 13           | May 28       |
|       | WP 244             | May 11           | Jun 25       |
|       | WP 245             | Jun 15           | Jul 30       |
| Q     | WP 246             | Jul 13           | Aug 27       |
|       | WP 247             | Aug 10           | Sep 24       |
|       | WP 248             | Sep 14           | Oct 29       |
| Q     | WP 249             | Oct 16           | Nov 30       |
|       | WP 250             | Nov 13           | Dec 28       |
|       | WP 251             | Dec 14           | Jan 28, 2016 |

| Soil (Including UST in Soil) |          |        |        |
|------------------------------|----------|--------|--------|
|                              | Scheme # | Opens  | Closes |
| Q                            | SOIL 89  | Jan 19 | Mar 5  |
| Q                            | SOIL 90  | Apr 20 | Jun 4  |
| Q                            | SOIL 91  | Jul 20 | Sep 3  |
| Q                            | SOIL 92  | Oct 19 | Dec 3  |

| Radiochemistry |          |       |        |
|----------------|----------|-------|--------|
|                | Scheme # | Opens | Closes |
| Q              | RAD 100  | Jan 5 | Feb 19 |
| Q              | RAD 101  | Apr 6 | May 21 |
| Q              | RAD 102  | Jul 6 | Aug 20 |
| Q              | RAD 103  | Oct 5 | Nov 19 |

| MRAD     |        |        |
|----------|--------|--------|
| Scheme # | Opens  | Closes |
| MRAD 22  | Mar 16 | May 15 |
| MRAD 23  | Sep 21 | Nov 20 |

2 schemes per year – open for 60 days

| Air & Emissions |          |        |        |  |
|-----------------|----------|--------|--------|--|
|                 | Scheme # | Opens  | Closes |  |
| Q               | AE 31    | Jan 26 | Mar 12 |  |
| Q               | AE 32    | Apr 27 | Jun 11 |  |
| Q               | AE 33    | Jul 27 | Sep 10 |  |
| Q               | AE 34    | Oct 26 | Dec 10 |  |

## QuiK Response PT

Need PT results fast? ERA's QuiK Response PTs are available on demand, 52 weeks a year. Plus, with QuiK Response, you receive final results in just two business days. Contact your ERA Customer Service Representative or an authorized ERA sales partner to place your QuiK Response order.



# 2016 PROFICIENCY TESTING SCHEME SCHEDULE



| Water Supply |          |        |              |
|--------------|----------|--------|--------------|
|              | Scheme # | Opens  | Closes       |
| Q            | WS 234   | Jan 11 | Feb 25       |
|              | WS 235   | Feb 8  | Mar 24       |
|              | WS 236   | Mar 1  | Apr 15       |
| Q            | WS 237   | Apr 4  | May 19       |
|              | WS 238   | May 9  | Jun 23       |
|              | WS 239   | Jun 6  | Jul 21       |
| Q            | WS 240   | Jul 11 | Aug 25       |
|              | WS 241   | Aug 8  | Sep 22       |
|              | WS 242   | Sep 6  | Oct 21       |
| Q            | WS 243   | Oct 7  | Nov 21       |
|              | WS 244   | Nov 1  | Dec 16       |
|              | WS 245   | Dec 5  | Jan 19, 2017 |

| Water | Pollution (Includ | ling UST in Water) |              |
|-------|-------------------|--------------------|--------------|
|       | Scheme #          | Opens              | Closes       |
| Q     | WP 252            | Jan 18             | Mar 3        |
|       | WP 253            | Feb 15             | Mar 31       |
|       | WP 254            | Mar 7              | Apr 21       |
| Q     | WP 255            | Apr 11             | May 26       |
|       | WP 256            | May 16             | Jun 30       |
|       | WP 257            | Jun 13             | Jul 28       |
| Q     | WP 258            | Jul 18             | Sep 1        |
|       | WP 259            | Aug 15             | Sep 29       |
|       | WP 260            | Sep 12             | Oct 27       |
| Q     | WP 261            | Oct 14             | Nov 28       |
|       | WP 262            | Nov 7              | Dec 22       |
|       | WP 263            | Dec 12             | Jan 26, 2017 |

| Soil (Including UST in Soil) |          |        |        |  |
|------------------------------|----------|--------|--------|--|
|                              | Scheme # | Opens  | Closes |  |
| Q                            | SOIL 93  | Jan 25 | Mar 10 |  |
| Q                            | SOIL 94  | Apr 18 | Jun 2  |  |
| Q                            | SOIL 95  | Jul 23 | Sep 8  |  |
| Q                            | SOIL 96  | Oct 17 | Dec 1  |  |

| Radiochemistry |          |        |        |
|----------------|----------|--------|--------|
|                | Scheme # | Opens  | Closes |
| Q              | RAD 104  | Jan 11 | Feb 25 |
| Q              | RAD 105  | Apr 4  | May 19 |
| Q              | RAD 106  | Jul 11 | Aug 25 |
| Q              | RAD 107  | Oct 7  | Nov 21 |

| MRAD     |        |        |
|----------|--------|--------|
| Scheme # | Opens  | Closes |
| MRAD 24  | Mar 14 | May 13 |
| MRAD 25  | Sep 19 | Nov 18 |

2 schemes per year – open for 60 days

| Air & Emissions |          |        |        |  |
|-----------------|----------|--------|--------|--|
|                 | Scheme # | Opens  | Closes |  |
| Q               | AE 35    | Jan 29 | Mar 14 |  |
| Q               | AE 36    | Apr 25 | Jun 9  |  |
| Q               | AE 37    | Jul 29 | Sep 12 |  |
| Q               | AE 38    | Oct 24 | Dec 8  |  |

## QuiK Response PT

Need PT results fast? ERA's QuiK Response PTs are available on demand, 52 weeks a year. Plus, with QuiK Response, you receive final results in just two business days. Contact your ERA Customer Service Representative or an authorized ERA sales partner to place your QuiK Response order.



#### What is a Certified Reference Material?

A Certified Reference Material (CRM) is a standard with known concentrations or assigned values of specified analytes. The standard has a known uncertainty, homogeneity, and stability and assigned values of the analytes are traceable to an independent reference. A CRM is accompanied by an authenticated certificate of analysis.

#### Uses for Certified Reference Materials

- Development of a new analytical method
- Root cause analysis
- Analyst training and demonstration of capability
- Independent calibration verification

#### What is a Proficiency Test?

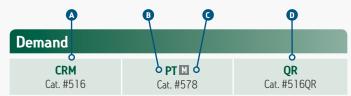
A Proficiency Test (PT) is an analysis of what is often referred to as a blind sample or a sample with unknown concentrations of analytes for the purpose of evaluating a laboratory's analytical performance.

#### **Uses for Proficiency Testing**

- Independent validation of your laboratory's measurement processes
- Compliance to accreditation requirements
- Expand scope of accreditation to include a new method
- Inter-laboratory performance comparison

#### What is a QuiK Response?

Similar to a Proficiency Test, a QuiK Response (QR) is a sample with unknown concentrations. However, unlike a scheduled PT, QR is on-demand and available at any time. Plus, your results are returned within two business days.


QuiK Response can be used as a bilateral PT as referenced in the IUPAC/CITAC guide: Selection and use of PT schemes for a limited number of participants — chemical analytical labs.



#### Uses for QuiK Response

- Demonstrate corrective action after a failed proficiency test
- Expand scope of accreditation to include a new method
- Document and validate the effectiveness of corrective actions

#### **Ordering Your Standards**



One 15 mL screw-cap vial yields up to 2 liters after dilution.



#### CRM

Certified Reference Material – a sample with known concentrations of one or more analytes.

#### B PT

Proficiency Test – a sample with unknown concentrations of one or more analytes.

- Frequency of scheduled scheme

  M = monthly or Q = quarterly
- QR

QuiK Response – a sample with unknown concentrations of one or more analytes. QR PTs are available anytime, 52 weeks a year.

## Confidence

As your partner in data defensibility, our experts are here to help your lab succeed by providing you with the tools you need to improve your quality.

#### MEET THE EXPERTS WEBINAR SERIES

Monthly webcast by our senior scientists designed to help you:

- Ensure your successful Proficiency Testing (PT) performance
- Solve routine analysis challenges
- Improve root cause analysis and corrective action

Register via our bi-monthly e-newsletter. To sign up or view previous newsletters, visit <a href="https://www.eraqc.com/newsevents/newsletterarchive">www.eraqc.com/newsevents/newsletterarchive</a>.

Or, contact your ERA Customer Service Representative for more information.

#### Previous webcasts include:

- CRMs and How They Relate to ISO 17025 Accreditation Outcomes
- Improving Root Cause and Corrective Action
- Analysis Tips for Radiochemistry
- DMR-QA Preparedness, Analysis Tips for TSS
- DMR-QA Preparedness, Analysis Tips for pH
- DMR-QA Preparedness, Analysis Tips for BOD
- SSAS Changes: Your Questions Answered
- Keys to Improved PT Results on Your Waste Water Microbiology Samples
- Creating a Robust and Sustainable Quality Assurance Program
- Take Control with Control Charting

- "The webinar was full of good information.
  I've really appreciated ERA making these
  webinars available. I particularly found
  this one and the recent one on Root Cause
  analysis to be helpful. Thanks to ERA for
  having them accessible after the original
  presentations."
  - > Quality Manager, Wyoming
- "I thought the class was excellent and, for us, timely. It showed us that we are on the right track, but have some work to do."
  - > Chemistry Supervisor, Wyoming
- "I found the seminar to be very helpful, and gathered some good tips."
  - > Assistant Laboratory Director, New York
- "Thank you so much, the webinar was very informative. I will certainly attend another webinar when offered."
- > QA Manager, Texas



# WATER POLLUTION

Matrices with high concentrations of analytes for testing water pollution or waste water. Standards are based on requirements of the United States Environmental Protection Agency Clean Water Act and may be used to satisfy PT requirements worldwide.



| 2015 Water Pollution PT Scheme Schedule                         |          |        |              |  |
|-----------------------------------------------------------------|----------|--------|--------------|--|
|                                                                 | Scheme # | Opens  | Closes       |  |
| Q                                                               | WP 240   | Jan 12 | Feb 26       |  |
|                                                                 | WP 241   | Feb 16 | Apr 2        |  |
|                                                                 | WP 242   | Mar 9  | Apr 23       |  |
| Q                                                               | WP 243   | Apr 13 | May 28       |  |
|                                                                 | WP 244   | May 11 | Jun 25       |  |
|                                                                 | WP 245   | Jun 15 | Jul 30       |  |
| Q                                                               | WP 246   | Jul 13 | Aug 27       |  |
|                                                                 | WP 247   | Aug 10 | Sep 24       |  |
|                                                                 | WP 248   | Sep 14 | Oct 29       |  |
| Q                                                               | WP 249   | Oct 16 | Nov 30       |  |
|                                                                 | WP 250   | Nov 13 | Dec 28       |  |
|                                                                 | WP 251   | Dec 14 | Jan 28, 2016 |  |
| Schedule subject to change – see ERA's website at www.eraqc.com |          |        |              |  |

| 2016 Water Pollution PT Scheme Schedule |                       |                     |                      |  |
|-----------------------------------------|-----------------------|---------------------|----------------------|--|
|                                         | Scheme #              | Opens               | Closes               |  |
| Q                                       | WP 252                | Jan 18              | Mar 3                |  |
|                                         | WP 253                | Feb 15              | Mar 31               |  |
|                                         | WP 254                | Mar 7               | Apr 21               |  |
| Q                                       | WP 255                | Apr 11              | May 26               |  |
|                                         | WP 256                | May 16              | Jun 30               |  |
|                                         | WP 257                | Jun 13              | Jul 28               |  |
| Q                                       | WP 258                | Jul 18              | Sep 1                |  |
|                                         | WP 259                | Aug 15              | Sep 29               |  |
|                                         | WP 260                | Sep 12              | Oct 27               |  |
| Q                                       | WP 261                | Oct 14              | Nov 28               |  |
|                                         | WP 262                | Nov 7               | Dec 22               |  |
|                                         | WP 263                | Dec 12              | Jan 26, 2017         |  |
| Sche                                    | dule subject to chang | ge – see ERA's webs | ite at www.eraqc.com |  |

| Description                                | CRM  | PT           | QR     | Page |
|--------------------------------------------|------|--------------|--------|------|
| Acidity                                    | 915  | 885 Q        | 915QR  | 16   |
| Acids                                      | 712  | 834 M        | 712QR  | 18   |
| Boron                                      | 919  | 886 <b>Q</b> | 919QR  | 16   |
| Base/Neutrals                              | 711  | 833 M        | 711QR  | 18   |
| Bromide                                    | 769  | 887 Q        | 769QR  | 16   |
| BTEX & MTBE                                | 760  | 643 Q        | 760QR  | 17   |
| Carbamate Pesticides                       | 908  | 899 <b>Q</b> | 908QR  | 19   |
| Chlordane                                  | 716  | 837 M        | 716QR  | 19   |
| Chlorinated Acid Herbicides                | 718  | 829 M        | 718QR  | 17   |
| Color                                      | 070  | 882 <b>Q</b> | 070QR  | 15   |
| Complex Nutrients                          | 525  | 579 M        | 525QR  | 12   |
| Cyanide & Phenol                           | 502  | 588 M        | 502QR  | 15   |
| Demand                                     | 516  | 578 M        | 516QR  | 13   |
| Diesel Range Organics (DRO) in Water       | 764  | 641 <b>Q</b> | 764QR  | 18   |
| EDB/DBCP/TCP                               | 692  | 562 <b>Q</b> | 692QR  | 18   |
| Gasoline Range Organics (GRO)              | 762  | 640 <b>Q</b> | 762QR  | 17   |
| Glycols in Water                           | 401  | 271 0        | 401QR  | 18   |
| Hardness                                   | 507  | 580 M        | 507QR  | 12   |
| HEM/SGT-HEM                                | 519  | 489 <b>Q</b> | 519QR  | 13   |
| Hexavalent Chromium                        | 984  | 898 M        | 984QR  | 14   |
| Lithium                                    | 4992 | 4990 💌       | 4992QR | 14   |
| Low-Level Mercury                          | 931  | 896 Q        | 931QR  | 14   |
| Low-Level Nitroaromatics & Nitramines      | 677  | 932 0        | 677QR  | 18   |
| Low-Level PAHs                             | 715  | 836 Q        | 715QR  | 18   |
| Low-Level Total Residual<br>Chlorine (TRC) | 917  | 881 M        | 917QR  | 16   |
| Mercury                                    | 514  | 574 M        | 514QR  | 14   |
| Minerals                                   | 506  | 581 M        | 506QR  | 12   |
| Nitrite                                    | 770  | 888 M        | 770QR  | 12   |
| Nitrogen Pesticides                        | 674  | 487 Q        | 674QR  | 19   |
|                                            |      |              |        |      |

**CRM** – Certified Reference Material

**PT** – Proficiency Testing

**QR** – QuiK Response

All ERA WP PTs open monthly (M) or quarterly (Q) unless otherwise noted.

WP Lithium PTs open in February and August. WP Sulfite PTs open in January and July.

Quarterly months are January, April, July, and October.

| Description                   | CRM     | P          | T    | QR            | Page |
|-------------------------------|---------|------------|------|---------------|------|
| Oil & Grease                  |         | see page   | 13 f | or options    |      |
| Organochlorine Pesticides     | 713     | 831        | М    | 713QR         | 19   |
| Organophosphorous Pesticides  | 665     | 934        | Q    | 665QR         | 19   |
| PAHs-GC/GCMS                  | 4882    | 4880       | Q    | 4882QR        | 18   |
| PCBs in Oil                   | 729S    | 835\$      | М    | 729SQR        | 17   |
| PCBs in Water                 | 734S    | 832\$      | М    | 734SQR        | 17   |
| pH                            | 977     | 577        | М    | 977QR         | 12   |
| QC Plus                       | S       | ee pages 2 | 1-22 | 2 for options |      |
| Ready-to-Use CRMS             |         | see page   | 20 f | or options    |      |
| Settleable Solids             | 911     | 883        | М    | 911QR         | 12   |
| Silica                        | 775     | 890        | Q    | 775QR         | 15   |
| Simple Nutrients              | 505     | 584        | М    | 505QR         | 12   |
| Solids                        | 499     | 241        | М    | 499QR         | 12   |
| Solids Concentrate            | 4032    | 4030       | М    | 4032QR        | 12   |
| Surfactants-MBAS              | 776     | 892        | Q    | 776QR         | 15   |
| Sulfide                       | 071     | 891        | М    | 071QR         | 15   |
| Sulfite                       | 534     | 244        | *    | 534QR         | 15   |
| Tin & Titanium                | 517     | 573        | М    | 517QR         | 14   |
| Total Organic Halides (TOX)   | 670     | 895        | Q    | 670QR         | 15   |
| Total Phenolics (4-AAP)       | 515     | 589        | М    | 515QR         | 15   |
| Total Residual Chlorine (TRC) | 501     | 587        | М    | 501QR         | 16   |
| Toxaphene                     | 717     | 838        | М    | 717QR         | 19   |
| TPH in Water                  | 600/601 | 642        | Q    | 602QR         | 13   |
| Trace Metals                  | 500     | 586        | М    | 500QR         | 14   |
| Turbidity                     | 777     | 893        | М    | 777QR         | 15   |
| Uranium                       | 4402    | 4400       | Q    | 4402QR        | 14   |
| Volatile Aromatics            | 4452    | 4450       | Q    | 4452QR        | 17   |
| Volatiles                     | 710     | 830        | М    | 710QR         | 17   |
|                               |         |            |      |               |      |

## QuiK Response PT

Need PT results fast? Available 52 weeks a year, QuiK Response PTs are on demand PTs that return final results within minutes of submitting your data online. In the US, please call ERA customer service at 800-372-0122 or 303-431-8454 to order. Outside of the US, please contact your authorized ERA sales partner to order.



#### MINERALS/SOLIDS

#### **Minerals**

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #506 | Cat. #581 | Cat. #506QR |

One 500 mL whole-volume bottle is ready to analyze.

| Total alkalinity as CaCO <sub>3</sub> | 25-400 mg/L       |
|---------------------------------------|-------------------|
| Chloride                              | 35-275 mg/L       |
| Fluoride                              | 0.4-4 mg/L        |
| Potassium                             | 4-40 mg/L         |
| Sodium                                | 10-100 mg/L       |
| Specific conductance at 25 °C         | 200-1200 µmhos/cm |
| Sulfate                               | 5-125 mg/L        |
| Total dissolved solids at 180 °C      | 140-800 mg/L      |
| Total solids at 105 °C                | 140-800 mg/L      |

#### **Hardness**

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #507 | Cat. #580 | Cat. #507QR |

One 500 mL whole-volume bottle is ready to analyze.

| Calcium                               | 10-100 mg/L |
|---------------------------------------|-------------|
| Calcium hardness as CaCO <sub>3</sub> | 25-250 mg/L |
| Total hardness as CaCO <sub>3</sub>   | 40-415 mg/L |
| Magnesium                             | 4-40 mg/L   |
| Total suspended solids (TSS)          | 20-100 mg/L |

#### рΗ

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #977 | Cat. #577 | Cat. #977QR |

One 250 mL whole-volume bottle is ready to analyze.

| pН. | 5-10 units |
|-----|------------|

#### Settleable Solids

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #911 | Cat. #883 | Cat. #9110R |

One 60 mL poly bottle with a solid yields 1 liter after dilution. Use with EPA method 160.5, Standard Methods 2540F, or other applicable method.

| Settleable | solids | <br> | <br>5-50 mL/L |
|------------|--------|------|---------------|
| Settleaple | solias | <br> | <br>๖-๖Ს ml/l |

#### **Volatile Solids**

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #913 | Cat. #884 | Cat. #913QR |

One  $12\,\text{mL}$  screw-cap vial with a solid yields 1 liter after dilution. Use with EPA method 160.4, Standard Methods 2540E, or other applicable method.

| Total volatile solids | 100-500 mg/L |
|-----------------------|--------------|
|-----------------------|--------------|

#### **Solids Concentrate**

| CRM        | PT™        | QR           |
|------------|------------|--------------|
| Cat. #4032 | Cat. #4030 | Cat. #4032QR |

One 24 mL screw-cap vial with a powder yields 1 liter of solution.

| Total solids at 105 °C           | 140-800 | mg/L |
|----------------------------------|---------|------|
| Total dissolved solids at 180 °C | 140-800 | mg/L |
| Total suspended solids (TSS)     | 20-100  | mg/L |

#### Solids

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #499 | Cat. #241 | Cat. #499QR |

One 500 mL whole-volume bottle is ready to analyze.

| Total solids at 105 °C           | 140-800 mg/l | Ĺ |
|----------------------------------|--------------|---|
| Total dissolved solids at 180 °C | 140-800 mg/l | L |
| Total suspended solids (TSS)     | 20-100 mg/l  | L |

#### **NUTRIENTS**

#### Simple Nutrients

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #505 | Cat. #584 | Cat. #505QR |

One 15 mL screw-cap vial yields up to 2 liters after dilution.

| Ammonia as N              | 1-20 mg/L |
|---------------------------|-----------|
| Nitrate as N              | 2-25 mg/L |
| Nitrate plus nitrite as N |           |
| ortho-Phosphate as P      |           |

#### **Complex Nutrients**

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #525 | Cat. #579 | Cat. #5250R |
| Cal. #323 | Cal. #319 | Cal. #323QN |

One 15 mL screw-cap vial yields up to 2 liters after dilution.

| Total Kjeldahl Nitrogen as N | 3-35 mg/L   |
|------------------------------|-------------|
| Total phosphorus as P        | 0.5-10 ma/L |

#### Nitrite

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #770 | Cat. #888 | Cat. #770QR |

One 15 mL screw-cap vial yields up to 2 liters after dilution.

| Nitrite as N |
|--------------|
|--------------|



## OIL & GREASE/TOTAL PETROLEUM HYDROCARBONS

When ordering Oil & Grease or Total Petroleum Hydrocarbons (TPH) PTs, please specify if you need a sample compatible with SPE.

#### Oil & Grease

**CRM** Cat. #504

One 250 mL whole-volume bottle is ready to analyze.

#### **HEM/SGT-HEM**

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #519 | Cat. #489 | Cat. #519QR |

One 5 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA method 1664, or other applicable method to measure hexane extractable material (HEM) and silica gel treated-HEM. Contains both hexadecane and stearic acid. Note: If a NELAC compliant PT is required, use Cat. #582 or Cat. #4120.

| Hexane extractable material | 5-100 mg/L |
|-----------------------------|------------|
| Silica gel treated-HEM      | 5-100 mg/L |

#### Oil & Grease Concentrate

| CRM        | PT M       | QR           |
|------------|------------|--------------|
| Cat. #4122 | Cat. #4120 | Cat. #4122QR |

One 24 mL screw-cap vial yields up to 2 liters after dilution. Use with EPA method 1664, or other applicable method. Gravimetric analysis only.

#### Total Petroleum Hydrocarbons (TPH) in Water

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #600 | Cat. #642 | Cat. #602QR |

One liter whole-volume bottle is ready to analyze for TPH without interfering fatty acids. Use with EPA methods 418.1, 1664, 5520, or other applicable method.

#### 1 Liter Oil & Grease

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #518 | Cat. #582 | Cat. #518QR |

One liter whole-volume glass bottle with a 33-430 thread is ready to analyze. For gravimetric and IR analyses.

#### Total Petroleum Hydrocarbons (TPH) in Water

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #601 | Cat. #642 | Cat. #602QR |

One liter whole-volume bottle is ready to analyze for TPH in the presence of interfering fatty acids. Use with EPA methods 418.1, 1664, 5520, or other applicable method.

#### 1 Liter Boston Round Oil & Grease

| CRM      | PT™      | QR         |
|----------|----------|------------|
| Cat #818 | Cat #582 | Cat #8180R |

One liter whole-volume glass bottle with a  $33-400\,$  thread is ready to analyze. For gravimetric and IR analyses.

#### DEMAND

#### Demand

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #516 | Cat. #578 | Cat. #516QR |

One 15 mL screw-cap vial yields up to 2 liters after dilution.

| 5-day BOD        | 18-230 mg/L |
|------------------|-------------|
| Carbonaceous BOD | 18-230 mg/L |
| COD              | 30-250 mg/L |
| TOC              | 6-100 mg/L  |



#### **METALS**

#### **Trace Metals**

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #500 | Cat. #586 | Cat. #500QR |

One  $15\,\mathrm{mL}$  screw-cap vial yields up to 1 liter after dilution. Use with AA, ICP-OES or ICP-MS and selected colorimetric methods.

| Aluminum   | 200-4,000 μg/L |
|------------|----------------|
| Antimony   | 90-900 μg/L    |
| Arsenic    | 90-900 μg/L    |
| Barium     | 100-2,500 μg/L |
| Beryllium  | 50-500 μg/L    |
| Boron      | 800-2,000 μg/L |
| Cadmium    | 100-1,000 μg/L |
| Chromium   | 100-1,000 μg/L |
| Cobalt     | 100-1,000 μg/L |
| Copper     | 100-1,000 μg/L |
| Iron       | 200-4,000 μg/L |
| Lead       | 100-1,500 μg/L |
| Manganese  | 200-2,000 μg/L |
| Molybdenum | 60-600 μg/L    |
| Nickel     | 200-2,000 μg/L |
| Selenium   |                |
| Silver     | 100-1,000 μg/L |
| Strontium  |                |
| Thallium   | 80-800 μg/L    |
| Vanadium   |                |
| Zinc       | 300-2,000 μg/L |



| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #514 | Cat. #574 | Cat. #514QR |

#### Low-Level Mercury

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #931 | Cat. #896 | Cat. #9310R |

One 5 mL flame-sealed ampule yields up to 4 liters after dilution. Use with EPA 1631, or other sensitive mercury analysis methods.

ERA Low-Level Mercury is also available during February and March WP PT schemes.

#### Hexavalent Chromium

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #984 | Cat. #898 | Cat. #984QR |

One  $15\ \text{mL}$  screw-cap vial yields up to  $2\ \text{liters}$  after dilution. Use with IC or colorimetric methods.



#### Tin and Titanium

| <b>CRM</b><br>Cat. #517 | <b>PT ™</b><br>Cat. #573 | <b>QR</b><br>Cat. #5170R |
|-------------------------|--------------------------|--------------------------|
| Cat. 115 1 1            | Cat. #313                | cat. II 5 1 1 QIV        |

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with AA, ICP-OES or ICP-MS methods.

| Tin      | 200-2,000 µg/L |
|----------|----------------|
| Titanium | 60-300 ug/l    |

#### **Uranium**

| <b>CRM</b><br>Cat. #4402 | <b>PT Q</b> Cat. #4400 | <b>QR</b><br>Cat. #44020R |
|--------------------------|------------------------|---------------------------|
| Cdl. #44UZ               | Cat. #4400             | Cal. #4402QN              |

One 15 mL screw-cap vial yields up to 1 liter after dilution.

#### Lithium

| CRM        | PT *       | OR           |  |
|------------|------------|--------------|--|
| CIVIT      | —          | •            |  |
| Cat. #4992 | Cat. #4990 | Cat. #4992QR |  |
|            |            |              |  |

One 15 mL screw-cap vial yields up to 2 liters after dilution. Designed for the Ohio VAP program.

ERA WP Lithium PTs open in February and August.



#### PHYSICAL PROPERTY

#### Color

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #070 | Cat. #882 | Cat. #070QR |

One 125 mL whole-volume bottle is ready to analyze. Use with EPA methods 110.1, 110.2, and 110.3, Standard Methods 2120B, 2120C, 2120E, or other applicable method.

Color..... .. 10-75 PC units

#### **Turbidity**

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #777 | Cat. #893 | Cat. #777QR |

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with nephelometric methods.

Turbidity.....

#### MISCELLANEOUS CHEMISTRY

#### Cyanide & Phenol

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #502 | Cat. #588 | Cat. #502QR |

One 15 mL screw-cap vial yields up to 2 liters after dilution. The CRM is also certified for Phenol at 0.05-5 mg/L. For a Total Phenolics PT, order Cat #589.

| Total Cyanide    | 0.1-1 mg/L |
|------------------|------------|
| Amenable Cuanide | 0.1-1 ma/l |

#### Total Organic Halides (TOX)

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #670 | Cat. #895 | Cat. #670QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Analyze for total organic halides with adsorption pyrolysis titrimetric methods.

..... 300-1,500 μg/L

#### Total Phenolics (4-AAP)

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #515 | Cat. #589 | Cat. #515QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Analyze for total phenolic compounds by 4-AAP methods.

Total Phenolics by 4-AAP.....

#### Silica

| CRM       | PT Q      | <b>QR</b>   |
|-----------|-----------|-------------|
| Cat. #775 | Cat. #890 | Cat. #775QR |

One 60 mL poly bottle yields up to 1 liter after dilution. Analyze for silica as SiO<sub>2</sub> with colorimetric or ICP methods.

Silica as SiO<sub>2</sub> .....

#### Sulfide

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #071 | Cat. #891 | Cat. #071QR |

One 10 mL flame-sealed ampule yields up to 1 liter after dilution. Preserved sample is guaranteed stable. Analyze for sulfide by titrimetric or colorimetric methods or ISE.

#### Sulfite

| CRM       | PT <b>■</b> | QR          |
|-----------|-------------|-------------|
| Cat. #534 | Cat. #244   | Cat. #534QR |

One 10 mL concentrate yields up to 2 liters after dilution.

Sulfite.......10-250 mg/L

ERA WP Sulfite PTs open in January and July.

#### Surfactants-MBAS

| CRM       | PT Q      | OR          |
|-----------|-----------|-------------|
| Cat. #776 | Cat. #892 | Cat. #7760R |

One 15 mL screw-cap vial yields up to 2 liters after dilution. Analyze for Surfactants-MBAS with EPA method 425.1, or other applicable method.

#### MISCELLANEOUS CHEMISTRY

#### **Acidity**

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #915 | Cat. #885 | Cat. #915QR |

One 250 mL whole-volume bottle is ready to analyze. Designed for use with titrimetric methods to a pH endpoint of  $8.3\ S.U.$ 

#### Total Residual Chlorine (TRC)

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #501 | Cat. #587 | Cat. #501QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with titrimetric or colorimetric methods.

#### **Boron**

| <b>CRM</b><br>Cat. #919 | <b>PT Q</b> Cat. #886 | <b>QR</b><br>Cat. #919QR |  |
|-------------------------|-----------------------|--------------------------|--|
|-------------------------|-----------------------|--------------------------|--|

One unpreserved 60 mL poly bottle yields in excess of 2 liters after dilution. Designed for colorimetric methods.

#### Low-Level Total Residual Chlorine (TRC)

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #917 | Cat. #881 | Cat. #917QR |

Designed for testing at low  $\mu g/L$  levels. One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with sensitive titrimetric or colorimetric methods.

#### **Bromide**

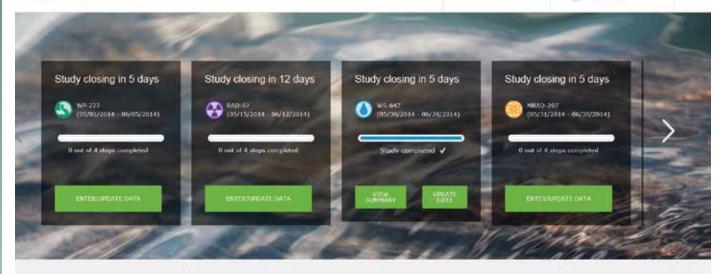
| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #769 | Cat. #887 | Cat. #769QR |

One  $15\ \text{mL}$  screw-cap vial yields up to  $2\ \text{liters}$  after dilution. Use with ion chromatography or colorimetric methods.

Bromide......1-10 mg/L



Studies


Reports

Statistics

Resources

Swarch for studies 🔍





Welcome to eData

### eDATA 2.0: The Next Evolution of PT Informatics





65 days

lays



WP-221(08/08/2014 - 09/19/201

72 days

#### **VOLATILES**

#### **Volatiles**

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #710 | Cat. #830 | Cat. #710QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA methods 601, 602, 8021, 624, 8260, or other applicable method. Contains a subset of the analytes listed below at 5-300  $\mu g/L$ .

| Acetone                     | (DBCP)                         | 4-Methyl-2-pentanone (MIBK) |
|-----------------------------|--------------------------------|-----------------------------|
| Acetonitrile                | 1,2-Dibromoethane (EDB)        | Methylene chloride          |
| Acrolein                    | Dibromomethane                 | Naphthalene                 |
| Acrylonitrile               | 1,2-Dichlorobenzene            | Nitrobenzene                |
| Benzene                     | 1,3-Dichlorobenzene            | n-Propylbenzene             |
| Bromobenzene                | 1,4-Dichlorobenzene            | Styrene                     |
| Bromochloromethane          | Dichlorodifluoromethane        | 1,1,1,2-Tetrachloroethane   |
| Bromodichloromethane        | 1,1-Dichloroethane             | 1,1,2,2-Tetrachloroethane   |
| Bromoform                   | 1,2-Dichloroethane             | Tetrachloroethene           |
| Bromomethane                | cis-1,2-Dichloroethene         | Toluene                     |
| 2-Butanone (MEK)            | 1,1-Dichloroethene             | 1,2,3-Trichlorobenzene      |
| n-Butylbenzene              | trans-1,2-Dichloroethene       | 1,2,4-Trichlorobenzene      |
| sec-Butylbenzene            | 1,3-Dichloropropane            | 1,1,1-Trichloroethane       |
| tert-Butylbenzene           | 1,2-Dichloropropane            | 1,1,2-Trichloroethane       |
| Carbon disulfide            | 2,2-Dichloropropane            | Trichloroethene             |
| Carbon tetrachloride        | cis-1,3-Dichloropropene        | Trichlorofluoromethane      |
| Chlorobenzene               | 1,1-Dichloropropene            | 1,2,3-Trichloropropane      |
| Chlorodibromomethane        | trans-1,3-Dichloropropene      | 1,2,4-Trimethylbenzene      |
| Chloroethane                | Ethylbenzene                   | 1,3,5-Trimethylbenzene      |
| 2-Chloroethyl vinyl ether   | Hexachlorobutadiene            | Vinyl acetate               |
| Chloroform                  | Hexachloroethane               | Vinyl chloride              |
| Chloromethane               | 2-Hexanone                     | m&p Xylene                  |
| 2-chlorotoluene             | Isopropylbenzene               | o-Xylene                    |
| 4-chlorotoluene             | p-lsopropyltoluene             | Xylenes, total              |
| 1,2-Dibromo-3-chloropropane | Methyl tert-butyl ether (MTBE) |                             |

#### Gasoline Range Organics (GRO) in Water

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #762 | Cat. #640 | Cat. #762QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with both purge & trap and modified EPA 8015 GC/FID methods or other applicable methods to test for GRO at 400-4,000  $\mu g/L$ . Also use to test for BTEX in gasoline.

#### HERBICIDES

#### **Chlorinated Acid Herbicides**

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #718 | Cat. #829 | Cat. #718QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 615, 8151, or other applicable methods. Contains a subset of the analytes or other applicable methods listed below at  $2-10 \mu g/L$  (except MCPA and MCPP at 10-100 μg/L).

Note: 4-nitrophenol and pentachlorophenol are not within the EPA/NELAC range. Use the Acids standard (page 18) for these compounds in the EPA/NELAC range.

| Acifluorfen           | Dalapon                  | MCPP              |
|-----------------------|--------------------------|-------------------|
| Bentazone             | Dicamba                  | 4-Nitrophenol     |
| Chloramben            | 3,5-Dichlorobenzoic acid | Pentachlorophenol |
| 2,4-D                 | Dichlorprop              | Picloram          |
| 2,4-DB                | Dinoseb                  | 2,4,5-T           |
| Dacthal diacid (DCPA) | MCPA                     | 2,4,5-TP (Silvex) |

#### Volatile Aromatics

| CRM        | PTQ        | QR           |
|------------|------------|--------------|
| Cat. #4452 | Cat. #4450 | Cat. #44520R |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA methods 602, 8021, or other applicable method. Each standard contains all listed analytes at 5-300 µg/L after dilution.

| Benzene             | Ethylbenzene           | 1,3,5-Trimethylbenzene |
|---------------------|------------------------|------------------------|
| Chlorobenzene       | Naphthalene            | m&p Xylene             |
| 1,2-Dichlorobenzene | Toluene                | o-Xylene               |
| 1,3-Dichlorobenzene | 1,2,4-Trichlorobenzene | Xylenes, total         |
| 1,4-Dichlorobenzene | 1,2,4-Trimethylbenzene |                        |

#### pcbs

#### **PCBs in Water**

| CRM        | PT™        | QR           |
|------------|------------|--------------|
| Cat. #734S | Cat. #832S | Cat. #734SQR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 608, 8082, or other applicable method. Contains a different Aroclor, randomly selected from the list below at  $2-10 \mu g/L$ .

| Aroclor 1016 | Aroclor 1242 | Aroclor 1254 |
|--------------|--------------|--------------|
| Aroclor 1221 | Aroclor 1248 | Aroclor 1260 |
| Aroclor 1232 |              |              |

#### PCBs in Oil

| <b>CRM</b><br>Cat. #729S | <b>PT M</b> Cat. #835S | <b>QR</b><br>Cat. #729SOR |
|--------------------------|------------------------|---------------------------|
| Cal. #1233               | Cat. #0555             | Cat. #1 233QIV            |

One 10 mL flame-sealed ampule is ready to analyze. Use with EPA method 8082, or other applicable method. Contains a different Aroclor, randomly selected from the list below at 12-50 mg/kg.

| Aroclor 1016 | Aroclor 1254 | Aroclor 1260 |
|--------------|--------------|--------------|
| Aroclor 1242 |              |              |

#### BTEX & MTBE in Water

| CRM          | PT Q        | OR              |
|--------------|-------------|-----------------|
| *****        |             | •               |
| Cat. #760    | Cat. #643   | Cat. #760QR     |
| cat. II I oo | Cut. 110-13 | cat. II I ooqit |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA methods 602, 8021, or other applicable method. Includes all BTEX compounds and MTBE at 5-300  $\mu g/L$  after dilution.

#### **SEMIVOLATILES**

#### **Base/Neutrals**

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #711 | Cat. #833 | Cat. #7110R |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 625, 8270, or other applicable method. Contains a subset of the analytes listed below at  $10-225 \mu g/L$  (except Benzidine at  $200-1,000 \mu g/L$ ).

| Acenaphthene                | 2-Chloronaphthalene         | Hexachlorocyclopentadiene  |
|-----------------------------|-----------------------------|----------------------------|
| Acenaphthylene              | 4-Chlorophenyl phenyl ether | Hexachloroethane           |
| 2-Amino-1-methylbenzene     | Chrysene                    | Indeno(1,2,3-cd)pyrene     |
| (o-Toluidine)               | Dibenz(a,h)anthracene       | Isophorone                 |
| Aniline                     | Dibenzofuran                | 2-Methylnaphthalene        |
| Anthracene                  | 1,2-Dichlorobenzene         | Naphthalene                |
| Benzidine                   | 1,3-Dichlorobenzene         | 2-Nitroaniline             |
| Benzo(a)anthracene          | 1,4-Dichlorobenzene         | 3-Nitroaniline             |
| Benzo(b)fluoranthene        | 3,3'-Dichlorobenzidine      | 4-Nitroaniline             |
| Benzo(k)fluoranthene        | Diethyl phthalate           | Nitrobenzene               |
| Benzo(g,h,i)perylene        | Dimethyl phthalate          | N-Nitrosodiethylamine      |
| Benzo(a)pyrene              | Di-n-butyl phthalate        | N-Nitrosodimethylamine     |
| Benzyl alcohol              | 2,4-Dinitrotoluene          | N-Nitroso-di-n-propylamine |
| 4-Bromophenyl phenyl ether  | 2,6-Dinitrotoluene          | N-Nitrosodiphenylamine     |
| Butyl benzyl phthalate      | Di-n-octyl phthalate        | Pentachlorobenzene         |
| Carbazole                   | bis(2-Ethylhexyl)phthalate  | Phenanthrene               |
| 4-Chloroaniline             | Fluoranthene                | Pyrene                     |
| bis(2-Chloroethoxy)methane  | Fluorene                    | Pyridine                   |
| bis(2-Chloroethyl)ether     | Hexachlorobenzene           | 1,2,4,5-Tetrachlorobenzene |
| bis(2-Chloroisopropyl)ether | Hexachlorobutadiene         | 1,2,4-Trichlorobenzene     |
| 1-Chloronaphthalene         |                             |                            |

#### **Acids**

| CRM       | PT M      | OR          |
|-----------|-----------|-------------|
| Cat. #712 | Cat. #834 | Cat. #712QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 604, 625, 8041, 8270, or other applicable method. Contains a subset of the analytes listed below at 30-200 µg/L.

| Benzoic Acid            | 2,4-Dinitrophenol          | Pentachlorophenol         |
|-------------------------|----------------------------|---------------------------|
| 4-Chloro-3-methylphenol | 2-Methyl-4,6-dinitrophenol | Phenol                    |
| 2-Chlorophenol          | 2-Methylphenol             | 2,3,4,6-Tetrachlorophenol |
| 2,4-Dichlorophenol      | 3 & 4-Methlyphenol         | 2,4,5-Trichlorophenol     |
| 2,6-Dichlorophenol      | 2-Nitrophenol              | 2,4,6-Trichlorophenol     |
| 2,4-Dimethylphenol      | 4-Nitrophenol              |                           |

#### Diesel Range Organics (DRO) in Water

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #764 | Cat. #641 | Cat. #764QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with modified EPA 8015 GC/FID methods, or other applicable method. Includes #2 Diesel at  $800-6,000 \mu g/L$ .

#### EDB/DBCP/TCP

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #692 | Cat. #562 | Cat. #692QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA method 8011, or other applicable method. Each lot contains all analytes at  $15-150 \mu g/L$ .

| 1,2-Dibromo-3-chloropropane (DBCP) | 15-150 μg/L |
|------------------------------------|-------------|
| 1,2-Dibromoethane (EDB)            | 10-120 μg/L |
| 1.2.3-Trichloropropane (TCP)       | 15-150 ug/L |

#### Glycols in Water

|           | _         |             |
|-----------|-----------|-------------|
| RM        | PT Q      | QR          |
| Cat. #401 | Cat. #271 | Cat. #401QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 8015B, 8430, 1671, or other applicable method.

| Diethylene glycol | Propylene glycol     | Triethylene glycol |
|-------------------|----------------------|--------------------|
| Ethulene alucol   | Tetraethulene glucol |                    |

#### Low-Level Nitroaromatics & Nitramines

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #677 | Cat. #932 | Cat. #677QR |

One 2 mL flame-sealed ampule yields up to 2 liters of sample after dilution. Use with EPA methods 8330, 8091, or other applicable method for explosive and explosive residue analytes. Contains at least 80% of the analytes, randomly selected from the list below at  $1-20 \mu g/L$ .

| 4-Amino-2,6-dinitrotoluene | HMX            | RDX                   |
|----------------------------|----------------|-----------------------|
| 2-Amino-4,6-dinitrotoluene | Nitrobenzene   | Tetryl                |
| 1,3-Dinitrobenzene         | 2-Nitrotoluene | 1,3,5-Trinitrobenzene |
| 2,4-Dinitrotoluene         | 3-Nitrotoluene | 2,4,6-Trinitrotoluene |
| 2 6-Dinitrotoluene         | 1-Nitrotoluene |                       |

#### Low-Level PAHs

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #715 | Cat. #836 | Cat. #715QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA  $\,$ HPLC methods 610, 8310, or other applicable method, and GC/MS method 8270 SIM. Contains a subset of the analytes listed below at  $0.5-20 \mu g/L$ .

| Acenaphthene         | Benzo(g,h,i)perylene  | Fluorene               |
|----------------------|-----------------------|------------------------|
| Acenaphthylene       | Benzo(a)pyrene        | Indeno(1,2,3-cd)pyrene |
| Anthracene           | Chrysene              | Naphthalene            |
| Benzo(a)anthracene   | Dibenz(a,h)anthracene | Phenanthrene           |
| Benzo(b)fluoranthene | Fluoranthene          | Pyrene                 |
| Benzo(k)fluoranthene |                       |                        |

#### PAHs - GC/GCMS

| CRM        | PTQ        | QR           |
|------------|------------|--------------|
| Cat. #4882 | Cat. #4880 | Cat. #4882QR |

One 2mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 625, 8100, 8270, or other applicable method. Each standard contains a subset of the analytes listed below at 10-200 µg/L.

| Acenaphthene         | Benzo(k)fluoranthene  | Fluorene               |
|----------------------|-----------------------|------------------------|
| Acenaphthylene       | Benzo(g,h,i)perylene  | Indeno(1,2,3-cd)pyrene |
| Anthracene           | Chrysene              | Naphthalene            |
| Benzo(a)anthracene   | Dibenz(a,h)anthracene | Phenanthrene           |
| Benzo(a)pyrene       | Fluoranthene          | Pyrene                 |
| Renzo(h)fluoranthene |                       |                        |



#### pesticibes

#### Organochlorine Pesticides

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #713 | Cat. #831 | Cat. #7130R |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 608, 8081, or other applicable method. Contains a subset of the analytes listed below at  $1\text{-}20~\mu\text{g/L}$ .

| Aldrin              | 4,4'-DDD      | Endrin                    |
|---------------------|---------------|---------------------------|
| alpha-BHC           | 4,4'-DDE      | Endrin aldehyde           |
| beta-BHC            | 4,4'-DDT      | Endrin ketone             |
| delta-BHC           | Dieldrin      | Heptachlor                |
| gamma-BHC (Lindane) | Endosulfan I  | Heptachlor epoxide (beta) |
| alpha-Chlordane     | Endosulfan II | Methoxychlor              |

Endosulfan sulfate

#### Nitrogen Pesticides

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #674 | Cat. #487 | Cat. #674QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 619, 633, 8141, 8270, or other applicable method. Contains a subset of the analytes listed below at 2-20  $\mu$ g/L.

| Alachlor  | Deethyl atrazine     | Prometon    |
|-----------|----------------------|-------------|
| Ametryn   | Deisopropyl atrazine | Prometryn   |
| Anilazine | Diaminoatrazine      | Pronamide   |
| Atraton   | EPTC (Eptam)         | Propachlor  |
| Atrazine  | Hexazinone           | Propazine   |
| Bromacil  | Metolachlor          | Simazine    |
| Butachlor | Metribuzin           | Terbacil    |
| Butylate  | Napropamide          | Trifluralin |
| Cyanazine |                      |             |

As your partner in defensible data, we are dedicated to ensuring your successful PT performance by helping you solve analytical challenges and improve root cause analysis and corrective action.

#### Chlordane

gamma-Chlordane

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #716 | Cat. #837 | Cat. #716QR |

One 2 mL flame-sealed ampule yields up to 2 liters of sample after dilution. Use with EPA methods 608, 8081, or other applicable method. Contains technical chlordane at  $3-25~\mu g/L$ .

# CRM PT № QR Cat. #717 Cat. #838 Cat. #717QR

One 2 mL flame-sealed ampule yields up to 2 liters of sample after dilution. Use with EPA methods 608, 8081, or other applicable method. Contains toxaphene at  $20\text{-}100~\mu\text{g/L}$ .

#### Carbamate Pesticides

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #908 | Cat. #899 | Cat. #908QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA method 632, or other applicable method. Contains a subset of the analytes listed below at 5-200  $\mu g/L$ .

| Aldicarb           | Carbaryl            | Methiocarb |
|--------------------|---------------------|------------|
| Aldicarb sulfone   | Carbofuran          | Methomyl   |
| Aldicarb sulfoxide | Diuron              | Oxamyl     |
| Baygon             | 3-Hydroxycarbofuran | Propham    |

#### Organophosphorus Pesticides (OPP)

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #665 | Cat. #934 | Cat. #665QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 614, 622, 8141, or other applicable method. Contains a subset of the analytes listed below at 2-20  $\mu$ g/L.

Terbufos

| Azinphos-methyl (Guthion) | Dioxathion                  | Malathion                      |
|---------------------------|-----------------------------|--------------------------------|
| Carbophenothion           | Disulfoton                  | Methyl parathion               |
| Chlorpyrifos              | Ethion                      | Phorate                        |
| Demeton 0 & S             | Ethoprop                    | Phosmet                        |
| Diazinon                  | Ethyl Parathion (Parathion) | Ronnel                         |
| Dichlorvos (DDVP)         | Famphur                     | Stirophos (tetrachlorovinphos) |

Fonofos

Dimethoate

#### **READY-TO-USE CRMS**

The following whole-volume standards are ready-to-use as provided and require no dilution before analysis.\*

#### **Minerals**

#### **CRM**

Cat. #506

One 500 mL whole-volume bottle is ready to analyze.

| Total alkalinity as CaCO <sub>3</sub> | 25-400 mg/L  |
|---------------------------------------|--------------|
| Chloride                              |              |
| Fluoride                              |              |
| Potassium                             |              |
| Sodium                                | 10-100 mg/L  |
| Specific conductance at 25 °C         |              |
| Sulfate                               | 5-125 mg/L   |
| Total dissolved solids at 180 °C      | 140-800 mg/L |
| Total solids at 105 °C                | 140-800 mg/L |

#### **Hardness**

#### **CRM**

Cat. #507

One 500 mL whole-volume bottle is ready to analyze.

| Calcium                               | 10-100 mg/L |
|---------------------------------------|-------------|
| Calcium hardness as CaCO <sub>3</sub> | 25-250 mg/L |
| Total hardness as CaCO <sub>3</sub>   | 40-415 mg/L |
| Magnesium                             | 4-40 mg/L   |
| Total suspended solids (TSS)          | 20-100 mg/L |

#### pН

#### CRM

Cat. #977

One 250 mL whole-volume bottle is ready to analyze. Use with electrometric methods.

#### Oil & Grease

#### **CRM**

Cat. #504

One 250 mL whole-volume bottle is ready to analyze. Use with EPA hexane extraction method 1664, or other applicable method. Certified values are provided for IR and gravimetric methods. For additional Oil & Grease CRMs see page 13.

#### **Solids**

#### **CRM**

Cat. #499

One 500 mL whole-volume bottle is ready to analyze.

| Total solids at 105 °C           | 140-800 mg/L |
|----------------------------------|--------------|
| Total dissolved solids at 180 °C | 140-800 mg/L |
| Total suspended solids (TSS)     | 20-100 mg/L  |
| pH                               | 5-10 units   |

#### Trace Metals\*

#### **CRM**

Cat. #740

One 500 mL whole-volume bottle is ready to analyze. Use with AA, ICP-OES or ICP-MS methods.

| Aluminum   | 200-4,000 μg/L |
|------------|----------------|
| Antimony   | 90-900 μg/L    |
| Arsenic    | 90-900 μg/L    |
| Barium     | 100-2,500 μg/L |
| Beryllium  | 50-500 μg/L    |
| Boron      |                |
| Cadmium    |                |
| Chromium   | 100-1,000 μg/L |
| Cobalt     | 100-1,000 μg/L |
| Copper     | 100-1,000 μg/L |
| Iron       | 200-4,000 μg/L |
| Lead       |                |
| Manganese  | 200-2,000 μg/L |
| Molybdenum | 60-600 μg/L    |
| Nickel     | 200-2,000 μg/L |
| Selenium   | , 13           |
| Silver     | 100-1,000 μg/L |
| Strontium  | 50-500 μg/L    |
| Thallium   | 80-800 μg/L    |
| Vanadium   | 50-2,000 μg/L  |
| Zinc       | 300-2,000 μg/L |
|            |                |

#### Demand\*

#### CRM

Cat. #743

One  $500\ \text{mL}$  whole-volume bottle is ready to analyze.

| 5-day BOD        | 18-230 mg/L |
|------------------|-------------|
| Carbonaceous BOD | 18-230 mg/L |
| COD.             | 30-250 mg/L |
| TOC              | 6-100 mg/L  |

#### Simple Nutrients\*

#### CRM

Cat. #739

One 500 mL whole-volume bottle is ready to analyze.

| Ammonia as N              | 1-20 mg/L    |
|---------------------------|--------------|
| Nitrate as N              | 2-25 mg/L    |
| Nitrate plus nitrite as N | 2.5-25 mg/L  |
| ortho-Phoenhate as P      | 0.5-5.5 mg/l |

#### Complex Nutrients\*

#### CRM

Cat. #741

One 500 mL whole-volume bottle is ready to analyze.

| Total Kjeldahl Nitrogen as N | 3-35 mg/L   |
|------------------------------|-------------|
| Total phosphorus as P        | 0.5-10 mg/l |

#### oc plus

ERA's QC Plus program includes environmental analytes at concentrations that reflect realistic levels of pollutants in industrial settings.

Each sample level is designed for wastewater and industrial analysis. These Reference Materials (RM) are an asset to any quality assurance program because they enable you to test your internal systems to ensure that your equipment, methods, and analysts are producing quality data.

#### QC Plus - Demand

#### **RM**

Cat. #4013

One 24 mL screw-cap vial yields up to 1 liter after dilution.

| 5-day BOD        | 100-300 mg/L  |
|------------------|---------------|
| Carbonaceous BOD | 87.0-256 mg/L |
| COD              | 150-500 mg/L  |
| TOC              | 50.0-200 mg/L |

#### QC Plus - Hexavalent Chromium

#### RM

Cat. #4183

One 15 mL screw-cap vial yields up to 2 liters after dilution.

#### QC Plus - Minerals

#### RM

Cat. #4053

Two 30 mL screw-cap vials to be diluted together to yield up to 2 liters of sample.

| Alkalinity as CaCO <sub>3</sub>       | 10.0-300 mg/L   |
|---------------------------------------|-----------------|
| Calcium                               | 5.00-150 mg/L   |
| Calcium Hardness as CaCO <sub>3</sub> | 12.5-375 mg/L   |
| Chloride                              | 10.0-700 mg/L   |
| Conductivity100                       | )-4000 µmhos/cm |
| Magnesium                             | 1.00-50.0  mg/L |
| Potassium                             | 1.00-300~mg/L   |
| Sodium.                               | 10.0-300~mg/L   |
| Sulfate                               | 10.0-300 mg/L   |
| Total dissolved solids at 180 °C      | 20.0-2400 mg/L  |
| Total Hardness as CaCO <sub>3</sub>   | 15.0-600~mg/L   |
|                                       |                 |

#### QC Plus - Nutrients

#### RM

Cat. #4023

Two 15 mL screw-cap vials yield up to 2 liters each after dilution.

| Ammonia Nitrogen as N   | 0.250-10.0 mg/L  |
|-------------------------|------------------|
| Nitrate Nitrogen as N   | 0.250-10.0 mg/L  |
| ortho-Phosphate as P    | 0.0500-10.0 mg/L |
| Total Kjeldahl Nitrogen | 0.250-10.0 mg/L  |
| Total phosphorus as P   | 0.100-10.0 mg/L  |

#### QC Plus - Oil & Grease

#### RM

Cat. #4123

One 24 mL screw-cap vial yields up to 2 liters after dilution.

#### QC Plus - pH

#### RM

Cat. #4063

One 250 mL whole-volume bottle is ready to analyze.

#### QC Plus - Fluoride

#### RM

Cat. #4423

One 15 mL screw-cap vial yields up to 2 liters after dilution.



#### oc plus

#### QC Plus - Solids

#### **CRM**

Cat. #4033

One 24 mL screw-cap vial with a powder yields 1 liter after dilution.

| Total dissolved solids at 180 °C | 500-2000 mg/L |
|----------------------------------|---------------|
| Total solids at 105 °C           | 600-2500 mg/L |
| Total suspended solids (TSS)     | 100-500 mg/L  |

#### QC Plus - Total Cyanide

#### **CRM**

Cat. #4093

One 15 mL screw-cap vial yields up to 2 liters after dilution.

#### QC Plus - Total Phenolics

#### CRM

Cat. #4083

#### QC Plus - Total Residual Chlorine

#### **CRM**

Cat. #4103

#### QC Plus - Trace Metals

#### **CRM**

Cat. #4073

Two 15 mL screw-cap vials to be diluted together to yield up to 2 liters of sample. .50.0-200 μg/L .10.0-300 μg/L .10.0-250 μg/L .50.0-500 μg/L .5.00-100 μg/L .50.0-250 μg/L .5.00-100 μg/L .25.0-500 μg/L ..15.0-500 µg/L ..25.0-500 µg/L .50.0-500 ug/L ..50.0-500 μg/L .......... 0.500-5.00 μg/L .20.0-500 μg/L .50.0-500 μg/L ...10.0-100 µg/L ......10.0-100 µg/L .50.0-500 μg/L 200-1000 μg/L ..10.0-100 µg/L .50.0-250 μg/L .25.0-250 μg/L







# The Industry Standard.

#### Your Partner In Defensible Data

We understand that the art of our superior service is just as important as the science of our superior standards. Our goal is to help you successfully complete your accreditation requirements and ensure the reliability of the data you report to your customers.

- Customer Service and Technical experts with over 200 combined years of experience in the environmental testing field
- Available 6:00 am to 6:00 pm MT
   Monday Thursday, and 6:00 am to
   5:00 pm MT Friday.

#### No hassle product replacement

With your accreditation on the line, the last thing you need is for a PT sample to be dropped or broken in the lab, a dilution error, or routine QC problem to stand in the way of successfully reporting your results.

With ERA you get worry-free compliance.

#### Corrective action support

When failures occur, your accreditation and the defensibility of the results you report to your clients depends on effectively determining root cause and implementing appropriate corrective actions. Our technical experts have many years of environmental analytical experience and are here to help you solve your analytical challenges.

#### **HOW CAN ERA MAKE YOUR JOB EASIER?**

"I cannot think of anything more that would make lab life easier when it comes to ERA testing items. Online ordering is simple, online results posting is easy and customer support outstanding."

- Lead Operator, Virginia



# WATER SUPPLY

Matrices with low concentrations of analytes for testing water supply, drinking water, or ground water. Standards are based on requirements of the United States Environmental Protection Agency Safe Drinking Water Act and may be used to satisfy PT requirements worldwide.



| 2015 Water Supply PT Scheme Schedule |                        |                       |                    |
|--------------------------------------|------------------------|-----------------------|--------------------|
|                                      | Scheme #               | Opens                 | Closes             |
| Q                                    | WS 222                 | Jan 5                 | Feb 19             |
|                                      | WS 223                 | Feb 9                 | Mar 26             |
|                                      | WS 224                 | Mar 2                 | Apr 16             |
| Q                                    | WS 225                 | Apr 6                 | May 21             |
|                                      | WS 226                 | May 4                 | Jun 18             |
|                                      | WS 227                 | Jun 8                 | Jul 23             |
| Q                                    | WS 228                 | Jul 7                 | Aug 21             |
|                                      | WS 229                 | Aug 3                 | Sep 17             |
|                                      | WS 230                 | Sep 8                 | Oct 23             |
| Q                                    | WS 231                 | Oct 5                 | Nov 19             |
|                                      | WS 232                 | Nov 6                 | Dec 21             |
|                                      | WS 233                 | Dec 7                 | Jan 21, 2016       |
| Sc                                   | hedule subject to chan | ge – see ERA's websit | e at www.eraqc.com |

| 2016 Water Supply PT Scheme Schedule                            |          |        |              |  |
|-----------------------------------------------------------------|----------|--------|--------------|--|
|                                                                 | Scheme # | Opens  | Closes       |  |
| Q                                                               | WS 234   | Jan 11 | Feb 25       |  |
|                                                                 | WS 235   | Feb 8  | Mar 24       |  |
|                                                                 | WS 236   | Mar 1  | Apr 15       |  |
| Q                                                               | WS 237   | Apr 4  | May 19       |  |
|                                                                 | WS 238   | May 9  | Jun 23       |  |
|                                                                 | WS 239   | Jun 6  | Jul 21       |  |
| Q                                                               | WS 240   | Jul 11 | Aug 25       |  |
|                                                                 | WS 241   | Aug 8  | Sep 22       |  |
|                                                                 | WS 242   | Sep 6  | Oct 21       |  |
| Q                                                               | WS 243   | Oct 7  | Nov 21       |  |
|                                                                 | WS 244   | Nov 1  | Dec 16       |  |
|                                                                 | WS 245   | Dec 5  | Jan 19, 2017 |  |
| Schedule subject to change – see ERA's website at www.eraqc.com |          |        |              |  |

| Description                                  | CRM  | PT     | QR     | Page |
|----------------------------------------------|------|--------|--------|------|
| Carbamates/<br>Carbamoxyloxime<br>Pesticides | 707  | 846 M  | 707QR  | 30   |
| Chloral Hydrate                              | 676  | 853 🔹  | 676QR  | 29   |
| Chlordane                                    | 705  | 845 M  | 705QR  | 30   |
| Chlorinated Acid<br>Herbicides               | 704  | 851 M  | 704QR  | 31   |
| Color                                        | 661  | 859 Q  | 661QR  | 28   |
| Corrosivity                                  | 980  | 900 Q  | 980QR  | 28   |
| Cyanide                                      | 983  | 556 М  | 983QR  | 28   |
| Dioxin                                       | 663  | 857 Q  | 663QR  | 31   |
| EDB/DBCP/TCP                                 | 706  | 847 M  | 706QR  | 30   |
| Gasoline Additives                           | 909  | 905 Q  | 909QR  | 29   |
| Hardness                                     | 693  | 555 M  | 693QR  | 26   |
| Haloacetic Acids (HAA)                       | 684  | 852 M  | 684QR  | 29   |
| Halomethanes (THMs)                          | 702  | 842 M  | 702QR  | 29   |
| Hexavalent Chromium                          | 658  | 854 Q  | 658QR  | 26   |
| Inorganics                                   | 698  | 591 M  | 698QR  | 26   |
| Inorganic<br>Disinfection #1                 | 5272 | 5270 М | 5272QR | 27   |
| Inorganic<br>Disinfection #2                 | 5262 | 5260 M | 5262QR | 27   |
| Mercury                                      | 666  | 551 M  | 666QR  | 26   |
| Metals                                       | 697  | 590 ₪  | 697QR  | 26   |

| Description                    | CRM  | PT           | QR     | Page |
|--------------------------------|------|--------------|--------|------|
| Nitrite                        | 695  | 594 M        | 695QR  | 27   |
| Organic Carbon                 | 669  | 557 М        | 669QR  | 28   |
| o-Phosphate Nutrients          | 667  | 558 M        | 667QR  | 27   |
| PCBs as<br>Decachlorobiphenyl  | 708  | 839 Q        | 708QR  | 31   |
| Perchlorate                    | 910  | 903 Q        | 910QR  | 28   |
| Pesticides                     | 709  | 850 M        | 709QR  | 30   |
| рH                             | 779  | 552 <u>M</u> | 779QR  | 26   |
| Regulated Volatiles            | 703  | 840 M        | 703QR  | 29   |
| Residual Chlorine              | 696  | 593 М        | 696QR  | 28   |
| Semivolatiles #1               | 690  | 848 M        | 690QR  | 31   |
| Semivolatiles #2<br>Herbicides | 691  | 849 M        | 691QR  | 31   |
| Silica                         | 785  | 902 Q        | 785QR  | 28   |
| Solids Concentrate             | 5152 | 5150 M       | 5152QR | 26   |
| Surfactants-MBAS               | 784  | 901 Q        | 784QR  | 28   |
| Toxaphene                      | 700  | 844 M        | 700QR  | 30   |
| Turbidity                      | 699  | 592 ™        | 699QR  | 28   |
| Unregulated Volatiles          | 683  | 841 M        | 683QR  | 29   |
| Uranium                        | 930  | 858 <b>Q</b> | 930QR  | 26   |
| UV 254 Absorbance              | 662  | 904 Q        | 662QR  | 28   |
| Vanadium                       | 660  | 856 Q        | 660QR  | 26   |

**CRM** – Certified Reference Material

**PT** – Proficiency Testing

**QR** – QuiK Response

All ERA WS PTs open monthly (M) or quarterly (Q) unless otherwise noted. ERA Chloral Hydrate PTs open in January and July.

Quarterly months are January, April, July, and October.



#### QuiK Response PT

Need PT results fast? Available 52 weeks a year, QuiK Response PTs are on demand PTs that return final results within minutes of submitting your data online. In the US, please call ERA customer service at 800-372-0122 or 303-431-8454 to order. Outside of the US, please contact your authorized ERA sales partner to order.



#### MINERALS/SOLIDS

#### **Hardness**

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #693 | Cat. #555 | Cat. #693QR |

One 250 mL whole-volume bottle is ready to analyze.

| Calcium                               | 30-90 mg/L  |
|---------------------------------------|-------------|
| Calcium hardness as CaCO <sub>3</sub> | 75-225 mg/L |
| Total hardness as CaCO <sub>3</sub>   | 83-307 mg/L |
| Magnesium                             | 2-20 mg/L   |
| Sodium                                |             |

#### **Inorganics**

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #698 | Cat. #591 | Cat. #698QR |

One 500 mL whole-volume bottle is ready to analyze. The CRM is also certified for Sodium. For a Sodium PT, order Hardness, Cat. #555.

| Alkalinity as CaCO <sub>3</sub>        | 25-200 mg/L        |
|----------------------------------------|--------------------|
| Chloride                               |                    |
| Fluoride                               | 1-8 mg/L           |
| Nitrate as N                           | 3-10 mg/L          |
| Nitrate plus nitrite as N              | 3-10 mg/L          |
| Potassium                              | 10-40 mg/L         |
| Specific conductance at 25 °C          | 130-1,300 µmhos/cm |
| Sulfate                                | 25-250 mg/L        |
| Total dissolved solids (TDS) at 180 °C | 100-1,000 mg/L     |

#### На

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #779 | Cat. #552 | Cat. #779QR |

One 250 mL whole-volume bottle is ready to analyze.

| nΗ | 5-10 units |
|----|------------|

#### **Solids Concentrate**

| CRM        | PT M       | QR           |
|------------|------------|--------------|
| Cat. #5152 | Cat. #5150 | Cat. #51520R |

One 24 mL screw-cap vial with a powder yields 1 liter after dilution.

| Total filterable residue (TDS) at 180 °C | 100-1,000 mg/L |
|------------------------------------------|----------------|
| Total solids (TS) at 105 °C              | 123-1,100 mg/L |
| Total suspended solids (TSS)             | 23-100 mg/L    |



#### TRACE METALS

#### **Metals**

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #697 | Cat. #590 | Cat. #697QR |

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with ICP-OES, ICP-MS and AA methods.

| Aluminum   | 130-1,000 μg/L |
|------------|----------------|
| Antimony   | 6-50 μg/L      |
| Arsenic    | 5-50 μg/L      |
| Barium     | 500-3,000 μg/L |
| Beryllium  | 2-20 μg/L      |
| Boron      | 800-2,000 μg/L |
| Cadmium    | 2-50 μg/L      |
| Chromium   | 10-200 μg/L    |
| Copper     | 50-2,000 μg/L  |
| Iron       | 100-1,800 μg/L |
| Lead       | 5-100 μg/L     |
| Manganese  | 40-900 μg/L    |
| Molybdenum | 15-130 μg/L    |
| Nickel     |                |
| Selenium   | 10-100 μg/L    |
| Silver     | 20-300 μg/L    |
| Thallium   | 2-10 μg/L      |
| Vanadium   | , 13           |
| Zinc       | 200-2,000 μg/L |
|            |                |

#### Mercury

| _         |           |             |
|-----------|-----------|-------------|
|           |           |             |
| CRM       | PT M      | QR          |
| Cat. #666 | Cat. #551 | Cat. #666QR |

One  $15\ \text{mL}$  screw-cap vial yields up to  $1\ \text{liter}$  after dilution. Use with CVAA, ICP-MS or CVAFS methods.

#### Hexavalent Chromium

| CRM       | PT Q      | OR          |
|-----------|-----------|-------------|
| *****     |           | •           |
| Cat. #658 | Cat. #854 | Cat. #658QR |

One 15 mL screw-cap vial yields up to 2 liters after dilution.

Hexavalent chromium.......5-50  $\mu$ g/L

#### **Uranium**

| CRM       | PT Q      | OR          |
|-----------|-----------|-------------|
| Cat. #930 | Cat. #858 | Cat. #9300R |

One 15 mL screw-cap vial yields up to 2 liters after dilution. Use with ICP-MS methods.

 $Uranium ......3-104 \, \mu g/L$ 

#### **Vanadium**

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #660 | Cat. #856 | Cat. #6600R |

One  $15\ \text{mL}$  screw-cap vial yields up to  $2\ \text{liters}$  after dilution. Designed to meet California ELAP requirements.



#### DISINFECTION BY-PRODUCTS

#### Inorganic Disinfection #1

 CRM
 PT ■
 QR

 Cat. #5272
 Cat. #5270
 Cat. #5272QR

One 24 mL screw-cap vial yields up to 4 liters after dilution.

#### NUTRIENTS

# Nitrite QR Cat. #695 Cat. #594 Cat. #6950R

One 15 mL screw-cap vial yields up to 2 liters after dilution.

#### **Inorganic Disinfection #2**

| CRM        | PT™        | QR           |
|------------|------------|--------------|
| Cat. #5262 | Cat. #5260 | Cat. #5262QR |

One 24 mL screw-cap vial yields up to 4 liters after dilution.

| Bromate | 7-   | -50 <sub>l</sub> | ug/L |  |
|---------|------|------------------|------|--|
| Bromide | 50-3 | 300              | ug/L |  |

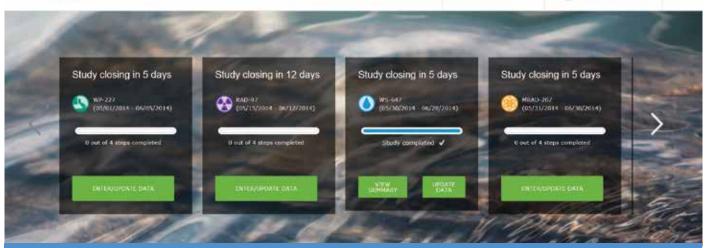
#### o-Phosphate Nutrients

| CRM       | PT M      | OR         |
|-----------|-----------|------------|
| Cat. #667 | Cat. #558 | Cat #6670R |

One 15 mL screw-cap vial yields up to 2 liters after dilution.






Reports

Statistics

Resources







## eDATA 2.0: New in 2015

## Effortless Insight

- Save time and money with ultra-fast, streamlined data entry.
- Easily identify problems to take corrective action with empowering performance evaluation tools.
- Showcase your quality with innovative performance reports for your laboratory or entire network.
- Effortlessly understand your entire network's performance with specialized tools for corporate managers.
- Eliminate transcription errors and increase productivity by uploading directly from your LIMS.

To learn more, visit www.eraqc.com/resources/edata

All ERA WS PTs open monthly ( $\blacksquare$ ) or quarterly ( $\blacksquare$ ) unless otherwise noted.

#### MISCELLANEOUS INORGANIC

#### **Residual Chlorine**

 CRM
 PT M
 QR

 Cat. #696
 Cat. #593
 Cat. #696QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution.

 Total Residual Chlorine
 0.5-3 mg/L

 Free Residual Chlorine
 0.5-3 mg/L

#### Color

**CRM PT 0 QR**Cat. #661 Cat. #859 Cat. #661QR

One 125 mL whole-volume bottle is ready to analyze.

PHYSICAL PROPERTY

#### Cyanide

 CRM
 PT ■
 QR

 Cat. #983
 Cat. #556
 Cat. #983QR

One  $15\ \text{mL}$  screw-cap vial yields up to  $2\ \text{liters}$  after dilution. Source material is free cyanide.

#### Corrosivity

 CRM
 PT 0
 QR

 Cat. #980
 Cat. #900
 Cat. #980QR

One 500 mL whole-volume bottle is ready to analyze for corrosivity, calcium carbonate saturation and Langelier saturation index.

Corrosivitu.....-4 to +4 SI units

#### **Organic Carbon**

 CRM
 PT ■
 QR

 Cat. #669
 Cat. #557
 Cat. #669QR

One 15 mL screw-cap vial yields up to 1 liter after dilution.

 Total Organic Carbon
 1.3-13 mg/L

 Dissolved Organic Carbon
 1.3-13 mg/L

#### **Turbidity**

 CRM
 PT 
 QR

 Cat. #699
 Cat. #592
 Cat. #699QR

One 15 mL screw-cap vial yields up to 1 liter after dilution. Use with nephelometric methods.

#### **Perchlorate**

 CRM
 PT Q
 QR

 Cat. #910
 Cat. #903
 Cat. #910QR

One 15 mL screw-cap vial yields up to 2 liters after dilution.

#### **UV 254 Absorbance**

**CRM PT QR** Cat. #662 Cat. #904 Cat. #662QR

One 15 mL screw-cap vial yields up to 1 liter after dilution.

#### Silica

One 60 mL poly bottle yields 1 liter after dilution.

#### Surfactants-MBAS

**CRM PT 0 QR**Cat. #784 Cat. #901 Cat. #7840R

One 15 mL screw-cap vial yields up to 2 liters after dilution.



#### DISINFECTION BY-PRODUCTS

#### Chloral Hydrate

| CRM       | PT *      | QR          |
|-----------|-----------|-------------|
| Cat. #676 | Cat. #853 | Cat. #676QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA method 551, or other applicable method. Includes chloral hydrate at 4-30  $\mu$ g/L.

ERA WS Chloral Hydrate PTs open in January and July.

#### Haloacetic Acids (HAA)

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #684 | Cat. #852 | Cat. #6840R |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA method 552, or other applicable method. Includes all the analytes below at 5-50  $\mu$ g/L.

Bromochloroacetic Acid Dichloroacetic Acid Monochloroacetic Acid
Dibromoacetic Acid Monobromoacetic Acid Trichloroacetic Acid

#### **VOLATILE ORGANICS**

#### **Gasoline Additives**

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #909 | Cat. #905 | Cat. #909QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA method 524.2, or other applicable method for gasoline additives/oxygenates. Contains all of the analytes below at 5-50  $\mu$ g/L.

tert-Amyl methyl ether (TAME) Ethyl tert-butyl ether (ETBE) Trichlorofluoromethane tert-Butyl Alcohol Methyl tert-butyl ether (MTBE) (Freon® 11)

Di-isopropylether (DIPE) Trichlorotrifluoroethane (Freon 113)

#### Halomethanes (THMs)

| CRM       | PT™       | QR          |
|-----------|-----------|-------------|
| Cat. #702 | Cat. #842 | Cat. #702QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA methods 502.2, 524.2, 551, or other applicable method. Contains all of the analytes below at 5-50  $\mu q/L$ .

Bromodichloromethane Chlorodibromomethane Chloroform

#### Regulated Volatiles

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #703 | Cat. #840 | Cat. #703QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA methods 502.2, 524.2, or other applicable method. Contains all of the analytes below at 2-50  $\mu$ g/L.

Benzene cis-1,2-Dichloroethylene Toluene Carbon tetrachloride trans-1,2-Dichloroethylene 1,2,4-Trichlorobenzene Chlorobenzene 1,2-Dichloropropane 1,1,1-Trichloroethane 1.2-Dichlorobenzene Ethylbenzene 1,1,2-Trichloroethane 1,4-Dichlorobenzene Methylene chloride Trichloroethylene 1,2-Dichloroethane Vinyl chloride Sturene 1,1-Dichloroethylene Tetrachloroethylene Xylenes, total

#### **Unregulated Volatiles**

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #683 | Cat. #841 | Cat. #683QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA methods 502.2, 524.2, or other applicable method. Contains at least 60% of the analytes randomly selected from the list below at 2-50  $\mu$ g/L.

Bromobenzene 1,3-Dichlorobenzene 4-Isopropyltoluene Bromochloromethane Dichlorodifluoromethane Methyl tert-butyl ether (MTBE) Bromomethane 1,1-Dichloroethane Naphthalene n-Butylbenzene 1,3-Dichloropropane n-Propylbenzene sec-Butylbenzene 1,1,1,2-Tetrachloroethane 2,2-Dichloropropane tert-Butylbenzene 1,1-Dichloropropene 1,1,2,2-Tetrachloroethane Chloroethane cis-1,3-Dichloropropene 1,2,3-Trichlorobenzene Chloromethane trans-1,3 Dichloropropene 1,2,3-Trichloropropane 2-Chlorotoluene Fluorotrichloromethane 1,2,4-Trimethylbenzene 4-Chlorotoluene Hexachlorobutadiene 1,3,5-Trimethylbenzene Dibromomethane Isopropylbenzene

#### **PESTICIDES**

#### **Pesticides**

 CRM
 PT M
 QR

 Cat. #709
 Cat. #850
 Cat. #709QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 505, 507, 508, 525, or other applicable method for organochlorine, nitrogen, and organophosphorus pesticides. Each standard contains at least 14 analytes randomly selected from the list below at 0.2-20  $\mu$ g/L.

| Alachlor  | Heptachlor                | Metribuzin        |
|-----------|---------------------------|-------------------|
| Aldrin    | Heptachlor epoxide (beta) | Molinate (Ordram) |
| Atrazine  | Hexachlorobenzene         | Prometon          |
| Bromacil  | Hexachlorocyclopentadiene | Propachlor        |
| Butachlor | Lindane (gamma-BHC)       | Simazine          |
| Diazinon  | Methoxychlor              | Thiobencarb       |
| Dieldrin  | Metolachlor               | Trifluralin       |
| Endrin    |                           |                   |

#### Chlordane

 CRM
 PT 
 QR

 Cat. #705
 Cat. #845
 Cat. #705QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 505, 508, 525, or other applicable method. Each standard contains technical chlordane at 2-20  $\mu$ g/L.

#### Toxaphene

**CRM** Cat. #700

**PT M** Cat. #844

**QR** Cat. #700QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 505, 508, 525, or other applicable method. Each standard contains toxaphene at 2-20  $\mu g/L$ .

# Meet the Experts Webinar Series

## Monthly webcast by our senior scientists designed to help you:

- Ensure your successful Proficiency
   Testing performance
- Solve routine analysis challenges
- Improve root cause analysis and corrective action

Register via our bi-monthly e-newsletter or webinar invitation via e-mail.

For more information or to view our previously recorded webinars, visit www.eragc.com/resources/webinars

#### Carbamate/Carbamoxyloxime Pesticides

 CRM
 PT M
 QR

 Cat. #707
 Cat. #846
 Cat. #707QR

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 531.1, 531.2, 632, or other applicable method. Each standard contains at least 8 of the analytes below at  $15-150 \, \mu g/L$ .

Aldicarb Carbaryl Methiocarb
Aldicarb sulfone Carbofuran Methomyl
Aldicarb sulfoxide 3-Hydroxycarbofuran Oxamyl

#### EDB/DBCP/TCP

 CRM
 PT ☑
 QR

 Cat. #706
 Cat. #847
 Cat. #706QR

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA methods 504, 551, or other applicable method. Each lot contains all analytes below at 0.05-2  $\mu$ g/L.

1,2-Dibromo-3-Chloropropane (DBCP) Ethylene dibromide (EDB) 1,2,3-Trichloropropane (1,2,3-TCP)

#### SEMIVOLATILE ORGANICS

#### **Dioxin**

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #663 | Cat. #857 | Cat. #663QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 613, 1613, 8280, 8290, or other applicable method. Each standard contains 2,3,7,8-TCDD at 20-100 pg/L.

#### PCBs as Decachlorobiphenyl

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #708 | Cat. #839 | Cat. #708QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA quantitative method 508A. This standard can also be used for Aroclor identification and quantification using EPA methods 505, 508, 508.1, or other applicable method. Includes an Aroclor randomly selected from the list below at 0.5-5  $\mu g/L$  as decachlorobiphenul.

| Aroclor 1016 | Aroclor 1242 | Aroclor 1254 |
|--------------|--------------|--------------|
| Aroclor 1221 | Aroclor 1248 | Aroclor 1260 |

Aroclor 1232

#### Semivolatiles #1

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #690 | Cat. #848 | Cat. #690QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 506, 525, 550, or other applicable method for PAHs, phthalates and adipates. Each standard contains Benzo(a)pyrene, Bis(2-ethylhexyl)) adipate, and Bis(2-ethylhexyl)) phthalate plus at least 13 additional analytes, selected from the list below, at 0.2-50  $\mu$ g/L.

| Acenaphthene         | Butyl benzyl phthalate   | bis(2-Ethylhexyl)phthalate |
|----------------------|--------------------------|----------------------------|
| Acenaphthylene       | Chyrsene                 | Fluoranthene               |
| Anthracene           | Dibenz(a,h)anthracene    | Fluorene                   |
| Benzo(a)anthracene   | Di-n-butyl phthalate     | Indeno(1,2,3-cd)pyrene     |
| Benzo(b)fluoranthene | Diethyl phthalate        | Naphthalene                |
| Benzo(k)fluoranthene | Dimethyl phthalate       | Phenanthrene               |
| Benzo(g,h,i)perylene | Di-n-octyl phthalate     | Pyrene                     |
| Benzo(a)pyrene       | bis(2-Ethylhexyl)adipate |                            |

Naphthalene is not within the EPA/NELAC range. Use the Unregulated Volatiles standard (page 29) for this compound in the EPA/NELAC range.

#### HERBICIDES

#### **Chlorinated Acid Herbicides**

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #704 | Cat. #851 | Cat. #704QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 515.1, 515.2, 515.3, 515.4, 555, or other applicable method. All lots include at least 10 analytes from the list below at 1-120  $\mu$ g/L.

 Acifluorfen
 Dalapon
 4-Nitrophenol

 Bentazone
 Dicamba
 Pentachlorophenol

 Chloramben
 3,5-Dichlorobenzoic acid
 Picloram

 2,4-D
 Dichlorprop
 2,4,5-T

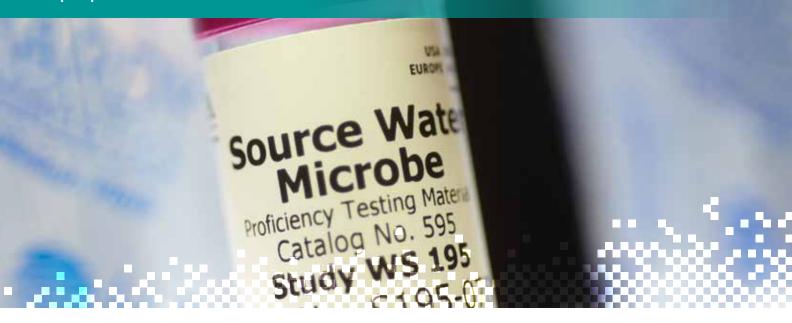
 2,4-DB
 Dinoseb
 2,4,5-TP (Silvex)

Dacthal diacid (DCPA)

#### Semivolatiles #2 Herbicides

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #691 | Cat. #849 | Cat. #691QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA methods 547, 548, 549, or other applicable method. Each standard contains all the analytes below at  $8-800\,\mu\text{g/L}$ .


Diquat Glyphosate Paraquat Endothall

End



# MICROBIOLOGY

Matrices with low and high concentrations of analytes for testing bacteria in drinking water and waste water. Samples are delivered as lyophilized pellets in a glass vial with phosphate buffer dilution water.



| 2015 Water Pollution PT Scheme Schedule                         |          |        |              |  |
|-----------------------------------------------------------------|----------|--------|--------------|--|
|                                                                 | Scheme # | Opens  | Closes       |  |
| Q                                                               | WP 240   | Jan 12 | Feb 26       |  |
|                                                                 | WP 241   | Feb 16 | Apr 2        |  |
|                                                                 | WP 242   | Mar 9  | Apr 23       |  |
| Q                                                               | WP 243   | Apr 13 | May 28       |  |
|                                                                 | WP 244   | May 11 | Jun 25       |  |
|                                                                 | WP 245   | Jun 15 | Jul 30       |  |
| Q                                                               | WP 246   | Jul 13 | Aug 27       |  |
|                                                                 | WP 247   | Aug 10 | Sep 24       |  |
|                                                                 | WP 248   | Sep 14 | Oct 29       |  |
| Q                                                               | WP 249   | Oct 16 | Nov 30       |  |
|                                                                 | WP 250   | Nov 13 | Dec 28       |  |
|                                                                 | WP 251   | Dec 14 | Jan 28, 2016 |  |
| Schedule subject to change — see ERA's website at www.eraqc.com |          |        |              |  |

| 2016 Water Pollution PT Scheme Schedule                         |          |        |              |  |
|-----------------------------------------------------------------|----------|--------|--------------|--|
|                                                                 | Scheme # | Opens  | Closes       |  |
| Q                                                               | WP 252   | Jan 18 | Mar 3        |  |
|                                                                 | WP 253   | Feb 15 | Mar 31       |  |
|                                                                 | WP 254   | Mar 7  | Apr 21       |  |
| Q                                                               | WP 255   | Apr 11 | May 26       |  |
|                                                                 | WP 256   | May 16 | Jun 30       |  |
|                                                                 | WP 257   | Jun 13 | Jul 28       |  |
| Q                                                               | WP 258   | Jul 18 | Sep 1        |  |
|                                                                 | WP 259   | Aug 15 | Sep 29       |  |
|                                                                 | WP 260   | Sep 12 | Oct 27       |  |
| Q                                                               | WP 261   | Oct 14 | Nov 28       |  |
|                                                                 | WP 262   | Nov 7  | Dec 22       |  |
|                                                                 | WP 263   | Dec 12 | Jan 26, 2017 |  |
| Schedule subject to change — see ERA's website at www.eraqc.com |          |        |              |  |

**CRM** – Certified Reference Material

PT – Proficiency Testing

**QR** – QuiK Response

All ERA Microbiology PTs open monthly ( $\mathbb{M}$ ) or quarterly ( $\mathbb{Q}$ ). Quarterly months are January, April, July, and October.

| Description                               | CRM | PT    | QR    | Page |
|-------------------------------------------|-----|-------|-------|------|
| Enterococci                               | 081 | 880 Q | 787QR | 33   |
| Massachusetts Ground<br>Water Enterococci | 081 | 077 💌 | _     | 33   |
| Wastewater Coliform<br>Microbe            | 083 | 576 M | 786QR | 33   |

#### WP MICROBIOLOGY

#### Wastewater Coliform Microbe

| CRM       | PT M      | QR          |
|-----------|-----------|-------------|
| Cat. #083 | Cat. #576 | Cat. #786QR |

Each PT sample is one lyophilized quantitative standard for use with all Clean Water Act quantitative methods, including MF and MPN.

CRM also includes one blank sample. Each standard can be used for Total Coliform, Fecal Coliform and E. coli which are present in the range 20-2.400 CFU/100 mL or MPN/100 mL.

#### Enterococci

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #081 | Cat. #880 | Cat. #787QR |

Each PT sample is one lyophilized standard, which can be analyzed for Enterococci and/or Fecal Streptococci, MF or MPN in the range 20-1,000 CFU/100 mL or MPN/100 mL.

CRM also includes one blank sample. Use with EPA methods 1106.1 and 1600, ASTM methods D5259-92, D6503-99 and Standard Methods 9230B and 9230C and Enterolert Quantitray.

#### STATE-SPECIFIC MICROBIOLOGY

#### Massachusetts Ground Water Enterococci

| CRM       | PT <b>■</b> |
|-----------|-------------|
| Cat. #081 | Cat. #077   |

Each PT sample set is composed of 10 lyophilized samples to be analyzed for presence or absence of Enterococci. This sample is specifically designed for the State of Massachusetts certification for compliance with the federal Ground Water Rule. Each CRM sample set is composed of 2 lyophilized samples - one quantitative positive and one blank.

Massachusetts Ground Water Enterococci PT is available any time.

#### **QuiK Response PT**

Need PT results fast? Available 52 weeks a year, QuiK Response PTs are on demand PTs that return final results within minutes of submitting your data online. In the US, please call ERA customer service at 800-372-0122 or 303-431-8454 to order. Outside of the US, please contact your authorized ERA sales partner to order.



## WS MICROBIOLOGY

| 2015 Water Supply PT Scheme Schedule                            |          |       |              |
|-----------------------------------------------------------------|----------|-------|--------------|
|                                                                 | Scheme # | Opens | Closes       |
| Q                                                               | WS 222   | Jan 5 | Feb 19       |
|                                                                 | WS 223   | Feb 9 | Mar 26       |
|                                                                 | WS 224   | Mar 2 | Apr 16       |
| Q                                                               | WS 225   | Apr 6 | May 21       |
|                                                                 | WS 226   | May 4 | Jun 18       |
|                                                                 | WS 227   | Jun 8 | Jul 23       |
| Q                                                               | WS 228   | Jul 6 | Aug 20       |
|                                                                 | WS 229   | Aug 3 | Sep 17       |
|                                                                 | WS 230   | Sep 8 | Oct 23       |
| Q                                                               | WS 231   | Oct 5 | Nov 19       |
|                                                                 | WS 232   | Nov 6 | Dec 21       |
|                                                                 | WS 233   | Dec 7 | Jan 21, 2016 |
| Schedule subject to change — see ERA's website at www.eraqc.com |          |       |              |

| 2016 Water Supply PT Scheme Schedule |                        |                       |                    |
|--------------------------------------|------------------------|-----------------------|--------------------|
|                                      | Scheme #               | Opens                 | Closes             |
| Q                                    | WS 234                 | Jan 11                | Feb 25             |
|                                      | WS 235                 | Feb 8                 | Mar 24             |
|                                      | WS 236                 | Mar 1                 | Apr 15             |
| Q                                    | WS 237                 | Apr 4                 | May 19             |
|                                      | WS 238                 | May 9                 | Jun 23             |
|                                      | WS 239                 | Jun 6                 | Jul 21             |
| Q                                    | WS 240                 | Jul 11                | Aug 25             |
|                                      | WS 241                 | Aug 8                 | Sep 22             |
|                                      | WS 242                 | Sep 6                 | Oct 21             |
| Q                                    | WS 243                 | Oct 7                 | Nov 21             |
|                                      | WS 244                 | Nov 1                 | Dec 16             |
|                                      | WS 245                 | Dec 5                 | Jan 19, 2017       |
| Sc                                   | hedule subject to chan | ge – see ERA's websit | e at www.eraqc.com |

**CRM** – Certified Reference Material

**PT** – Proficiency Testing

**QR** – QuiK Response

All ERA Microbiology PTs open monthly ( $\mathbf{M}$ ) or quarterly ( $\mathbf{Q}$ ). Quarterly months are January, April, July, and October.



| Description                       | CRM | PT    | QR    | Page |
|-----------------------------------|-----|-------|-------|------|
| Heterotrophic<br>Plate Count      | 084 | 079 M | 084QR | 35   |
| Potable Water<br>Coliform Microbe | 694 | 080 M | 085QR | 35   |
| Source Water Microbe              | 078 | 595 Q | 078QR | 35   |

| Heterotrophic Plate Count |                       |                          |  |
|---------------------------|-----------------------|--------------------------|--|
| <b>CRM</b><br>Cat. #084   | <b>PT M</b> Cat. #079 | <b>QR</b><br>Cat. #084QR |  |

Each sample is one lyophilized standard containing a Heterotrophic bacteria present in the range 5-500 CFU/mL or MPN/mL. Use with the Standard Methods 9215B-Pour Plate Method, and Most Probable Number (MPN) Method (simplate).

# Potable Water Coliform Microbe CRM PT ▼ QR Cat. #694 Cat. #080 Cat. #085QR

Each sample set consists of lyophilized standards for the presence or absence analysis of Total Coliform, Fecal Coliform, E. coli. The standards are applicable to all SDWA promulgated methods-MF, MPN, presence/absence and ONPG-MUG. The Potable Water Coliform Microbe PT standard is available in all 12 monthly WS studies.



Each sample is one lyophilized quantitative standard containing E. coli in the range 20-200 CFU/100 mL or MPN/100 mL. Use with all SDWA quantitative methods. Each standard can be used for total coliform, fecal coliform, and E. coli.



# **eDATA 2.0:** New in 2015

#### The Next Evolution of PT Informatics

- Save time and money with ultra-fast, streamlined data entry.
- Easily identify problems to take corrective action with empowering performance evaluation tools.
- Showcase your quality with innovative performance reports for your laboratory or entire network.
- Effortlessly understand your entire network's performance with specialized tools for corporate managers.
- Eliminate transcription errors and increase productivity by uploading directly from your LIMS.

To learn more, visit www.eraqc.com/resources/edata

# Matrices designed to fulfill requirements for monitoring soil and solid matrices. Dried and homogenized standards of soil and sewage sludge designed to meet the United States Resource Conservation and Recovery Act and may be used to satisfy PT requirements worldwide.

| 2015 Soil PT Scheme Schedule |          |        |        |
|------------------------------|----------|--------|--------|
|                              | Scheme # | Opens  | Closes |
| Q                            | SOIL 89  | Jan 19 | Mar 5  |
| Q                            | SOIL 90  | Apr 20 | Jun 4  |
| Q                            | SOIL 91  | Jul 20 | Sep 3  |
| Q                            | SOIL 92  | Oct 19 | Dec 3  |

Schedule subject to change – see ERA's website at www.eraqc.com

| 2016 Soil PT Scheme Schedule |          |        |        |
|------------------------------|----------|--------|--------|
|                              | Scheme # | Opens  | Closes |
| Q                            | SOIL 93  | Jan 25 | Mar 10 |
| Q                            | SOIL 94  | Apr 18 | Jun 2  |
| Q                            | SOIL 95  | Jul 25 | Sep 8  |
| Q                            | SOIL 96  | Oct 17 | Dec 1  |

Schedule subject to change – see ERA's website at www.eraqc.com

| Description                              | CRM | PT           | QR    | Page |
|------------------------------------------|-----|--------------|-------|------|
| Anions in Soil                           | 543 | 873 Q        | 543QR | 39   |
| Base/Neutrals &<br>Acids in Soil         | 727 | 467 <b>Q</b> | 727QR | 42   |
| BTEX & MTBE in Soil                      | 761 | 633 Q        | 761QR | 40   |
| Carbamate<br>Pesticides in Soil          | 926 | 879 <b>Q</b> | 926QR | 43   |
| Chlordane in Soil                        | 725 | 628 Q        | 725QR | 43   |
| Chlorinated Acid<br>Herbicides in Soil   | 723 | 626 <b>Q</b> | 723QR | 42   |
| Corrosivity/pH in Soil                   | 914 | 875 Q        | 914QR | 39   |
| Cyanide in Soil                          | 541 | 621 <b>Q</b> | 541QR | 39   |
| Diesel Range<br>Organics (DRO) in Soil   | 765 | 631 <b>Q</b> | 765QR | 42   |
| Gasoline Range<br>Organics (GRO) in Soil | 763 | 630 Q        | 763QR | 40   |
| Glycols in Soil                          | 928 | 463 Q        | 928QR | 42   |
| Hexavalent<br>Chromium in Soil           | 921 | 876 <b>Q</b> | 921QR | 44   |
| Ignitability/Flash Point                 | 979 | 874 <b>Q</b> | 979QR | 39   |
| Low-Level PAHs in Soil                   | 722 | 625 Q        | 722QR | 42   |
| Metals & Cyanide<br>Blank Sand           | 058 |              | _     | 45   |
| Metals & Cyanide<br>Blank Soil           | 057 | _            | _     | 45   |
| Metals in<br>Sewage Sludge               | 160 | 619 <b>Q</b> | 160QR | 44   |

| Description                                  | CRM     | PT            | QR      | Page |
|----------------------------------------------|---------|---------------|---------|------|
| Metals in Soil                               | 540     | 620 Q         | 540QR   | 44   |
| Nitroaromatics &<br>Nitramines in Soil       | 920     | 871 0         | 920QR   | 42   |
| Nutrients in Sludge                          | 545     | _             | _       | 39   |
| Nutrients in Soil                            | 542     | 869 Q         | 542QR   | 39   |
| Oil & Grease in Soil                         | 549     | 867 <b>Q</b>  | 549QR   | 39   |
| Organochlorine<br>Pesticides in Soil         | 728     | 468 <b>Q</b>  | 728QR   | 43   |
| Organophosphorus<br>Pesticides (OPP) in Soil | 925     | 878 0         | 925QR   | 43   |
| PCBs in Soil                                 | 726     | 624 Q         | 726QR   | 42   |
| PCBs in Oil                                  | see     | e page 44 for | options |      |
| PCBs in Soil                                 | see     | e page 44 for | options |      |
| PCBs in Water                                | see     | e page 44 for | options |      |
| Ready-to-use<br>VOAs in Soil                 | 924     | 870 0         | 924QR   | 40   |
| TCLP Metals in Soil                          | 544     | 629 <b>Q</b>  | 544QR   | 44   |
| TCLP Organochlorine<br>Pesticides            | 732     | _             | 732QR   | 41   |
| TCLP Semivolatiles                           | 737     | _             | 737QR   | 41   |
| TCLP Volatiles                               | 730     |               | 730QR   | 41   |
| Toxaphene in Soil                            | 724     | 627 <b>Q</b>  | 724QR   | 43   |
| TPH in Soil                                  | 570/571 | 632 <b>Q</b>  | 572QR   | 41   |
| Volatiles in Soil                            | 721     | 623 Q         | 721QR   | 40   |

**CRM** – Certified Reference Material

**PT** – Proficiency Testing **QR** – QuiK Response

All ERA Soil PTs open quarterly ( ) unless otherwise noted.

# QuiK Response PT

Need PT results fast? Available 52 weeks a year, QuiK Response PTs are on demand PTs that return final results within minutes of submitting your data online. In the US, please call ERA customer service at 800-372-0122 or 303-431-8454 to order. Outside of the US, please contact your authorized ERA sales partner to order.



# **METALS**

# Metals in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #540 | Cat. #620 | Cat. #540QR |

One  $40\,\mathrm{g}$  soil sample in a screw-cap bottle for all ICP and AA, RCRA and Superfund methods including EPA digestion methods  $3050\,\mathrm{hot}$  plate and  $3051\,\mathrm{microwave}$ , or other applicable methods. Includes all metals shown below.

| Aluminum   | , , ,              |
|------------|--------------------|
| Antimony   |                    |
| Arsenic    | 40-400 mg/kg       |
| Barium     | 100-1,000 mg/kg    |
| Beryllium  | 40-400 mg/kg       |
| Boron      | 80-800 mg/kg       |
| Cadmium    | 40-400 mg/kg       |
| Calcium    | 1,500-25,000 mg/kg |
| Chromium   | 40-400 mg/kg       |
| Cobalt     | 40-400 mg/kg       |
| Copper     | 40-400 mg/kg       |
| Iron       | 1,000-50,000 mg/kg |
| Lead       | 40-400 mg/kg       |
| Magnesium  | 1,200-25,000 mg/kg |
| Manganese  | 100-2,000 mg/kg    |
| Mercury    | 1-35 mg/kg         |
| Molybdenum | 30-300 mg/kg       |
| Nickel     | 40-500 mg/kg       |
| Potassium  | 1,400-25,000 mg/kg |
| Selenium   | 40-400 mg/kg       |
| Silver     | 20-100 mg/kg       |
| Sodium     | 150-15,000 mg/kg   |
| Strontium  | 40-400 mg/kg       |
| Thallium   | 40-400 mg/kg       |
| Tin        | 75-250 mg/kg       |
| Titanium   | 10-2,000 mg/kg     |
| Uranium    | 1.0-250 mg/kg      |
| Vanadium   | 40-400 mg/kg       |
| Zinc       | 100-1,000 mg/kg    |
|            |                    |

# Hexavalent Chromium in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #921 | Cat. #876 | Cat. #921QR |

One  $40\ g$  standard in a screw-cap bottle for use with all promulgated hexavalent chromium methods.

Hexavalent chromium.......40-300 mg/kg

# TCLP Metals in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #544 | Cat. #629 | Cat. #544QR |

One 105~g soil standard in a screw-cap bottle designed specifically to meet all state requirements for TCLP extraction and analysis for the metals listed below.

| Antimony  | Cadmium  | Nickel   |
|-----------|----------|----------|
| Arsenic   | Chromium | Selenium |
| Barium    | Lead     | Silver   |
| Beryllium | Mercury  | Zinc     |

# Metals in Sewage Sludge

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #160 | Cat. #619 | Cat. #160QR |

One  $40~{\rm g}$  sludge standard in a screw-cap bottle to be analyzed for the metals listed below.

| disted below. |                    |
|---------------|--------------------|
| Aluminum      | 1,000-50,000 mg/kg |
| Antimony      | 80-300 mg/kg       |
| Arsenic       | 50-400 mg/kg       |
| Barium        | 250-2,000 mg/kg    |
| Beryllium     | 30-200 mg/kg       |
| Cadmium       | 40-300 mg/kg       |
| Calcium       | 5,000-70,000 mg/kg |
| Chromium      | 40-300 mg/kg       |
| Cobalt        | 5-50 mg/kg         |
| Copper        | 40-1,000 mg/kg     |
| Iron          | 1,000-50,000 mg/kg |
| Lead          | 50-250 mg/kg       |
| Magnesium     | 1,200-25,000 mg/kg |
| Manganese     | 100-2,000 mg/kg    |
| Mercury       | 1-50 mg/kg         |
| Molybdenum    | 5-250 mg/kg        |
| Nickel        | 40-250 mg/kg       |
| Potassium     | 1,400-25,000 mg/kg |
| Selenium      | 50-250 mg/kg       |
| Silver        | 50-250 mg/kg       |
| Sodium        | 150-15,000 mg/kg   |
| Strontium     | 200-2,000 mg/kg    |
| Thallium      | 50-250 mg/kg       |
| Vanadium      | 5-250 mg/kg        |
| Zinc          | 70-1,500 mg/kg     |





# PHYSICAL PARAMETERS

# Corrosivity/pH in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #914 | Cat. #875 | Cat. #914QR |

One 100 g soil standard in a screw-cap bottle. Use to measure corrosivity.

Corrosivity/pH ......2-12 S.U.

# Ignitability/Flash Point

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #979 | Cat. #874 | Cat. #979QR |

# OIL & GREASE

# Oil & Grease in Soil

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #549 | Cat. #867 | Cat. #549QR |

One screw-cap bottle containing 50~g of soil ready to analyze. Use with gravimetric method 9071B or infrared spectrometric analysis.

# INORGANICS

# **Anions in Soil**

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #543 | Cat. #873 | Cat. #543QR |

One 40~g soil standard in a screw-cap bottle designed for a DI water extraction procedure for all the anions listed below.

| Bromide        | 10-100 mg/kg   |
|----------------|----------------|
| Chloride       |                |
| Fluoride       | 25-500 mg/kg   |
| Nitrate as N   | 25-500 mg/kg   |
| Phosphate as P | 25-500 mg/kg   |
| Sulfate        | 25-2,000 mg/kg |

# Cyanide in Soil

| CRM       | PT Q       | OR           |
|-----------|------------|--------------|
| 01.11     |            | 41,          |
| Cat. #541 | Cat. #621  | Cat. #5410R  |
| Cal. #341 | Cal. #UZ I | Cat. #34 IQI |

# **Nutrients in Soil**

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #542 | Cat. #869 | Cat. #542QR |

One  $40\,\mathrm{g}$  soil standard in a screw-cap bottle. Use to analyze for all the nutrients listed below.

| Ammonia as N                 | 300-3,000 mg/kg    |
|------------------------------|--------------------|
| Total Kjeldahl Nitrogen as N | 400-4,000 mg/kg    |
| Total Organic Carbon (TOC)   | 1,000-20,000 mg/kg |
| Total phosphorus as P        | 300-3 000 mg/kg    |

# **Nutrients in Sludge**

# CRM

Cat. #545

One 40 g sludge standard in a screw-cap bottle is ready for analysis.

| Ammonia as N                 | 0.1-5% (w/w)  |
|------------------------------|---------------|
| Total Kjeldahl Nitrogen as N | 2-10% (w/w)   |
| Total Organic Carbon (TOC)   | 5-50% (w/w)   |
| Total phosphorus as P        | 0.5-10% (w/w) |





# **VOLATILES**

# **Volatiles in Soil**

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #721 | Cat. #623 | Cat. #721QR |

One 2 mL flame-sealed ampule in methanol requires spiking onto the provided ten grams of solid matrix before analysis. Use with EPA methods 8021, 8260, or other applicable methods. Includes a subset of the analytes listed below at  $20-200 \mu g/kg$  ( $40-400 \mu g/kg$  for total xylenes, 80-1000 for selected ketones, and 200-1,000  $\mu$ g/kg for acetonitrile).

|                             | ,                              |                           |
|-----------------------------|--------------------------------|---------------------------|
| Acetone                     | 1,2-Dibromoethane (EDB)        | Methylene chloride        |
| Acetonitrile                | Dibromomethane                 | Naphthalene               |
| Acrolein                    | 1,2-Dichlorobenzene            | Nitrobenzene              |
| Benzene                     | 1,3-Dichlorobenzene            | n-Propylbenzene           |
| Bromobenzene                | 1,4-Dichlorobenzene            | Styrene                   |
| Bromochloromethane          | Dichlorodifluoromethane        | 1,1,1,2-Tetrachloroethane |
| Bromodichloromethane        | 1,1-Dichloroethane             | 1,1,2,2-Tetrachloroethane |
| Bromoform                   | 1,2-Dichloroethane             | Tetrachloroethene         |
| Bromomethane                | 1,1-Dichloroethylene           | Toluene                   |
| 2-Butanone (MEK)            | cis-1,2-Dichloroethylene       | 1,2,3-Trichlorobenzene    |
| n-Butylbenzene              | trans-1,2-Dichloroethylene     | 1,2,4-Trichlorobenzene    |
| sec-Butylbenzene            | 1,2-Dichloropropane            | 1,1,1-Trichloroethane     |
| tert-Butylbenzene           | 1,3-Dichloropropane            | 1,1,2-Trichloroethane     |
| Carbon disulfide            | 2,2-Dichloropropane            | Trichloroethene           |
| Carbon tetrachloride        | 1,1-Dichloropropene            | Trichlorofluoromethane    |
| Chlorobenzene               | cis-1,3-Dichloropropylene      | 1,2,3-Trichloropropane    |
| Chlorodibromomethane        | trans-1,3-Dichloropropylene    | 1,2,4-Trimethylbenzene    |
| Chloroethane                | Ethylbenzene                   | 1,3,5-Trimethylbenzene    |
| 2-Chloroethyl vinyl ether   | Hexachlorobutadiene            | Vinyl acetate             |
| Chloroform                  | Hexachloroethane               | Vinyl chloride            |
| Chloromethane               | 2-Hexanone                     | m&p-Xylene                |
| 2-chlorotoluene             | Isopropylbenzene               | o-Xylene                  |
| 4-chlorotoluene             | p-Isopropyltoluene             | Xylenes, total            |
| 1,2-Dibromo-3-chloropropane | Methyl tert-butyl ether (MTBE) |                           |
| (DBCP)                      | 4-Methyl-2-pentanone (MIBK)    |                           |
|                             |                                |                           |

This standard is not compliant with the NELAC concentration for Hexachloroethane, Hexachlorobutadiene and Nitrobenzene. If a NELAC compliant sample is required for these analytes, use Ready-to-Use VOAs in Soil, or Base/Neutrals and Acids in Soil.

# Gasoline Range Organics (GRO) in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #763 | Cat. #630 | Cat. #763QR |

One flame-sealed ampule with 20 g of soil spiked with unleaded regular gasoline in the range 100-2,000 mg/kg. Use with purge and trap and modified EPA 8015 GC/FID methods, or other applicable methods. Also use to test for BTEX in gasoline.

# BTEX & MTBE in Soil

| <b>CRM</b><br>Cat. #761 | <b>PT Q</b> Cat. #633 | <b>QR</b><br>Cat. #7610R |
|-------------------------|-----------------------|--------------------------|
| 00.11.1.0.1             | 541 H 555             | 34 5 . Q                 |

One 2 mL flame-sealed ampule requires spiking onto the ten grams of provided certified clean soil. Includes the anlaytes below at 20-200 μg/kg (40-400 μg/kg for Total Xylenes). Use with EPA method 8021, or other applicable methods.

Methyl tert-butyl ether (MTBE) Xylenes, total Benzene

Ethylbenzene

# Ready-to-Use VOAs in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #924 | Cat. #870 | Cat. #924QR |

One 20 mL flame-sealed ampule containing 10 g of soil and 10 mL of methanol is ready to analyze. Use with methods 8021, 8260, or other applicable methods. Includes a subset of the analytes listed below at  $1,000-20,000 \mu g/kg$ .

| cludes a subset of the allatyt | es disted below at 1,000-20    |
|--------------------------------|--------------------------------|
| Acetone                        | 1,2-Dibromoethane (EDB)        |
| Acetonitrile                   | Dibromomethane                 |
| Acrolein                       | 1,2-Dichlorobenzene            |
| Benzene                        | 1,3-Dichlorobenzene            |
| Bromobenzene                   | 1,4-Dichlorobenzene            |
| Bromochloromethane             | Dichlorodifluoromethane        |
| Bromodichloromethane           | 1,1-Dichloroethane             |
| Bromoform                      | 1,2-Dichloroethane             |
| Bromomethane                   | 1,1-Dichloroethene             |
| 2-Butanone (MEK)               | cis-1,2-Dichloroethylene       |
| n-Butylbenzene                 | trans-1,2-Dichloroethylene     |
| sec-Butylbenzene               | 1,2-Dichloropropane            |
| tert-Butylbenzene              | 1,3-Dichloropropane            |
| Carbon disulfide               | 2,2-Dichloropropane            |
| Carbon tetrachloride           | 1,1-Dichloropropene            |
| Chlorobenzene                  | cis-1,3-Dichloropropylene      |
| Chlorodibromomethane           | trans-1,3-Dichloropropylene    |
| Chloroethane                   | Ethylbenzene                   |
| 2-Chloroethyl vinyl ether      | Hexachlorobutadiene            |
| Chloroform                     | Hexachloroethane               |
| Chloromethane                  | 2-Hexanone                     |
| 2-chlorotoluene                | Isopropylbenzene               |
| 4-chlorotoluene                | p-Isopropyltoluene             |
| 1,2-Dibromo-3-chloropropane    | Methyl tert-butyl ether (MTBE) |
| (DBCP)                         | 4-Methyl-2-pentanone (MIBK)    |
|                                |                                |

Naphthalene Nitrobenzene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1.1.2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl acetate Vinul chloride m&p-Xylene o-Xylene

Xylenes, total

Methylene chloride





# TOTAL PETROLEUM HYDROCARBONS

# Total Petroleum Hydrocarbons (TPH) in Soil

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #570 | Cat. #632 | Cat. #572QR |

One screw-top bottle with 50 g of soil to be analyzed for TPH. Use with EPA IR or gravimetric methods 8440, 9071B, or other applicable methods.

| _ |                                                    |                 |
|---|----------------------------------------------------|-----------------|
|   | Non-polar Extractable Material (TPH) (Gravimetric) | 300-3,000 mg/kg |
|   | Non-polar Extractable Material (TPH) (IR)          | 300-3,000 mg/kg |

# Total Petroleum Hydrocarbons (TPH) in Soil

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #571 | Cat. #632 | Cat. #572QR |

One screw-top bottle with 50 g of soil to be analyzed for TPH in the presence of interfering fatty acids. Use with EPA IR or gravimetric methods  $8440,\,9071B$ , or other applicable methods.

| Non-polar Extractable Material (TPH) (Gravimetric) | 300-3,000 mg/kg |
|----------------------------------------------------|-----------------|
| Non-polar Extractable Material (TPH) (IR)          | 300-3,000 mg/kg |

# QuiK Response PT

Need PT results fast? Available 52 weeks a year, QuiK Response PTs are on demand PTs that return final results within minutes of submitting your data online. In the US, please call ERA customer service at 800-372-0122 or 303-431-8454 to order. Outside of the US, please contact your authorized ERA sales partner to order.

# TCLP

# **TCLP Volatiles**

| CRM       | QR          |
|-----------|-------------|
| Cat. #730 | Cat. #730QR |

One 2 mL flame-sealed ampule containing a subset of the analytes listed below, each at a concentration of 0.05-2.0 mg/L.

| Benzene              | Chloroform           | Tetrachloroethylene |
|----------------------|----------------------|---------------------|
| 2-Butanone (MEK)     | 1,4-Dichlorobenzene  | Trichloroethylene   |
| Carbon tetrachloride | 1,2-Dichloroethane   | Vinyl chloride      |
| Chlorobonzono        | 1 1-Dichloroothulono |                     |

# TCLP Semivolatiles

| CRM       | QR          |
|-----------|-------------|
| Cat. #737 | Cat. #7370R |

One 2 mL flame-sealed ampule containing a subset of the analytes listed below, each at a concentration of 0.1-2.0 mg/L after dilution. All unspiked analytes are certified at < 0.5 mg/L.

| 1,4-dichlorobenzene | Hexachloroethane   | Pentachlorophenol     |
|---------------------|--------------------|-----------------------|
| 2,4-Dinitrotoluene  | 2-Methylphenol     | Pyridine              |
| Hexachlorobenzene   | 3 & 4-Methylphenol | 2,4,5-Trichlorophenol |
| Hexachlorobutadiene | Nitrobenzene       | 2,4,6-Trichlorophenol |

# TCLP Organochlorine Pesticides

| CRM       | QR          |
|-----------|-------------|
| Cat. #732 | Cat. #732QF |

One 2 mL flame-sealed ampule containing a subset of the analytes listed below, each at a concentration of 0.01-0.2~mg/L after dilution. All unspiked analytes are certified at <0.01~mg/L.

Endrin Heptachlor epoxide Methoxychlor Heptachlor gamma-BHC (Lindane)





# **SEMIVOLATILES**

# Nitroaromatics & Nitramines in Soil

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #920 | Cat. #871 | Cat. #920QR |

Two flame-sealed ampules each containing 30 g of soil are ready to analyze. Use for EPA methods 8330, 8091, or other applicable methods. Includes a subset of the analytes listed below at 1,500-15,000  $\mu$ g/kg.

| 4-Amino-2,6-dinitrotoluene | HMX          | RDX    |
|----------------------------|--------------|--------|
| 2-Amino-4,6-dinitrotoluene | Nitrobenzene | Tetryl |

 1,3-Dinitrobenzene
 2-Nitrotoluene
 1,3,5-Trinitrobenzene

 2,4-Dinitrotoluene
 3-Nitrotoluene
 2,4,6-Trinitrotoluene

2,6-Dinitrotoluene 4-Nitrotoluene

# Low-Level PAHs in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #722 | Cat. #625 | Cat. #722QR |

Two flame-sealed ampules each containing 30 g are ready to analyze. Use for EPA HPLC method 8310, 8270 SIM, or other applicable method. Includes a subset of the analytes listed below at  $50-1,000\,\mu\text{g/kg}$ .

| 9                    | . 100                 |                        |
|----------------------|-----------------------|------------------------|
| Acenaphthene         | Benzo(g,h,i)perylene  | Fluorene               |
| Acenaphthylene       | Benzo(a)pyrene        | Indeno(1,2,3-cd)pyrene |
| Anthracene           | Chrysene              | Naphthalene            |
| Benzo(a)anthracene   | Dibenz(a,h)anthracene | Phenanthrene           |
| Benzo(b)fluoranthene | Fluoranthene          | Pyrene                 |
| Benzo(k)fluoranthene |                       |                        |
|                      |                       |                        |

# Diesel Range Organics (DRO) in Soil

| CRM      | PT Q     | QR         |
|----------|----------|------------|
| Cat #765 | Cat #631 | Cat #7650R |

One flame-sealed ampule with 20 g of soil spiked with #2 Diesel fuel in the range 300-3,000 mg/kg. Use with modified EPA 8015, or other applicable GC/FID methods.

# HERBICIDES

# Chlorinated Acid Herbicides in Soil

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #723 | Cat. #626 | Cat. #723QR |

Two flame-sealed ampules, each containing 30 g of soil are ready-to-use. Use with EPA method 8151, or other applicable methods. Includes a subset of the analytes listed below at  $100-1,000 \mu g/kg$  (MCPA & MCPP  $1,000-10,000 \mu g/kg$ ).

| -                     |                          |                   |
|-----------------------|--------------------------|-------------------|
| Acifluorfen           | Dalapon                  | MCPP              |
| Bentazone             | Dicamba                  | 4-Nitrophenol     |
| Chloramben            | 3,5-Dichlorobenzoic acid | Pentachloropheno  |
| 2,4-D                 | Dichlorprop              | Picloram          |
| 2,4-DB                | Dinoseb                  | 2,4,5-T           |
| Dacthal diacid (DCPA) | MCPA                     | 2 / 5-TP (Silvey) |

This standard is not compliant with the NELAC concentration for 4-Nitrophenol and Pentachlorophenol. If a NELAC compliant sample is required for these analytes, use Base/Neutrals and Acids in Soil.

# Glycols in Soil

| RM        | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #928 | Cat. #463 | Cat. #928QR |

Two flame-sealed ampules each containing 30 g of soil are ready-to-use. Use with EPA methods 8015B, 8430, 1671, or other applicable method.

Diethylene glycol Propylene glycol Triethylene glycol
Ethylene glycol Tetraethylene glycol

# Base/Neutrals & Acids in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #727 | Cat. #467 | Cat. #727QR |

Two flame-sealed ampules each containing 30 g of soil are ready-to-use. Use with EPA method 8270, or other applicable method. Includes a subset of the analytes listed below at  $1,000-15,000 \,\mu\text{g/kg}$ .

| Acenaphthene                | Chrysene                   | 2-Methyl-4,6-dinitrophenol |
|-----------------------------|----------------------------|----------------------------|
| Acenaphthylene              | Dibenz(a,h)anthracene      | 2-Methylnaphthalene        |
| 2-Amino-1-methylbenzene     | Dibenzofuran               | 2-Methylphenol             |
| (o-Toluidine)               | Di-n-butyl phthalate       | 3 & 4-Methylphenol         |
| Aniline                     | 1,2-Dichlorobenzene        | Naphthalene                |
| Anthracene                  | 1,3-Dichlorobenzene        | 2-Nitroaniline             |
| Benzidine                   | 1,4-Dichlorobenzene        | 3-Nitroaniline             |
| Benzoic acid                | 3,3'-Dichlorobenzidine     | 4-Nitroaniline             |
| Benzo(a)anthracene          | 2,4-Dichlorophenol         | Nitrobenzene               |
| Benzo(b)fluoranthene        | 2,6-Dichlorophenol         | 2-Nitrophenol              |
| Benzo(k)fluoranthene        | Diethyl phthalate          | 4-Nitrophenol              |
| Benzo(g,h,i)perylene        | 2,4-Dimethylphenol         | N-Nitrosodiethylamine      |
| Benzo(a)pyrene              | Dimethyl phthalate         | N-Nitrosodimethylamine     |
| Benzyl alcohol              | 2,4-Dinitrophenol          | N-Nitrosodiphenylamine     |
| 4-Bromophenyl phenyl ether  | 2,4-Dinitrotoluene         | N-Nitroso-di-n-propylamine |
| Butyl benzyl phthalate      | 2,6-Dinitrotoluene         | Pentachlorobenzene         |
| Carbazole                   | Di-n-octyl phthalate       | Pentachlorophenol          |
| 4-Chloroaniline             | bis(2-Ethylhexyl)phthalate | Phenanthrene               |
| bis(2-Chloroethyl)ether     | Fluoranthene               | Phenol                     |
| bis(2-Chloroethoxy)methane  | Fluorene                   | Pyrene                     |
| bis(2-Chloroisopropyl)ether | Hexachlorobenzene          | Pyridine                   |
| 4-Chloro-3-methylphenol     | Hexachlorobutadiene        | 1,2,4,5-Tetrachlorobenzene |
| 1-Chloronaphthalene         | Hexachlorocyclopentadiene  | 2,3,4,6-Tetrachlorophenol  |
| 2-Chloronaphthalene         | Hexachloroethane           | 1,2,4-Trichlorobenzene     |
| 2-Chlorophenol              | Indeno(1,2,3-cd)pyrene     | 2,4,5-Trichlorophenol      |
| 4-Chlorophenyl phenyl ether | Isophorone                 | 2,4,6-Trichlorophenol      |
|                             |                            |                            |

# pcbs

# PCBs in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #726 | Cat. #624 | Cat. #726QR |

One screw-top bottle containing 50 grams of standard is ready to analyze. Use with EPA method 8082, or other applicable methods. Each standard includes a different Aroclor randomly selected from the list below at 1-50 mg/kg.

 Aroclor 1016
 Aroclor 1242
 Aroclor 1254

 Aroclor 1221
 Aroclor 1248
 Aroclor 1260

Aroclor 1232



# **PESTICIDES**

# Organochlorine Pesticides in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #728 | Cat. #468 | Cat. #728QR |

Two flame-sealed ampules each containing 30 g of soil are ready-to-use. Use with EPA method 8081, or other applicable methods. Includes a subset of the analytes listed below at 50-500  $\mu g/kg$ .

| Aldrin              | 4,4'-DDD           | Endrin             |
|---------------------|--------------------|--------------------|
| alpha-BHC           | 4,4'-DDE           | Endrin aldehyde    |
| beta-BHC            | 4,4'-DDT           | Endrin ketone      |
| delta-BHC           | Dieldrin           | Heptachlor         |
| gamma-BHC (Lindane) | Endosulfan I       | Heptachlor epoxide |
| alpha-Chlordane     | Endosulfan II      | Methoxychlor       |
| gamma-Chlordane     | Endosulfan sulfate |                    |

# Chlordane in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #725 | Cat. #628 | Cat. #725QR |

One screw-top bottle containing 50~g of soil is ready to analyze. Use with EPA method 8081, or other applicable methods. The standard contains technical chlordane at  $200\text{-}1,000~\mu\text{g/kg}$ .

# Toxaphene in Soil

| <b>CRM</b><br>Cat. #724 | <b>PT Q</b> Cat. #627 | <b>QR</b><br>Cat. #724QR |
|-------------------------|-----------------------|--------------------------|
|                         |                       |                          |

One screw-top bottle containing 50 g of soil is ready to analyze. Use with method 8081, or other applicable methods. The standard contains toxaphene at 200-2,000  $\mu g/kg$ .

# Carbamate Pesticides in Soil

| CRM       | PT Q      | QR          |  |
|-----------|-----------|-------------|--|
| Cat. #926 | Cat. #879 | Cat. #926QR |  |

Two flame-sealed ampules, each containing 30 g of soil are ready to analyze. Use with EPA methods 8318,8321, or other applicable methods. Each standard contains a subset of the analytes listed below at  $250-2,500 \,\mu\text{g/kg}$ .

| Aldicarb           | Dioxacarb           | Oxamyl    |
|--------------------|---------------------|-----------|
| Aldicarb sulfone   | Diuron              | Promecarb |
| Aldicarb sulfoxide | 3-Hydroxycarbofuran | Propham   |
| Carbaryl           | Methiocarb          | Propoxur  |
| Carhofuran         | Methomul            |           |

# Organophosphorus Pesticides (OPP) in Soil

| CRM       | PT Q      | QR          |  |
|-----------|-----------|-------------|--|
| Cat. #925 | Cat. #878 | Cat. #925QR |  |

Two flame-sealed ampules, each containing 30 g of soil are ready to analyze. Use with EPA method 8141, or other applicable methods. Each standard contains a subset of the analytes listed below at  $100-1,000\,\mu g/kg$ .

| Azinphos-methyl (Guthion) | Disulfoton                  | Phorate                        |
|---------------------------|-----------------------------|--------------------------------|
| Chlorpyrifos              | Ethyl parathion (Parathion) | Ronnel                         |
| Demeton O & S             | Malathion                   | Stirophos (tetrachlorovinphos) |

Diazinon Methyl parathion Terbufos Dichlorvos (DDVP)

With over 200 years of collective experience, our technical experts are here to help you improve PT results and deliver more defensible data to your customers.



# SOIL

# PCBs in Soil

PCBs in soil standards are sold individually in screw-top bottles containing 50~g of soil. Use with EPA methods  $8082,\,4020,$  or other applicable methods. LOW LEVEL standards contain an Aroclor in the range 0.5-50~ppm. HIGH LEVEL standards contain an Aroclor in the range 51-500~ppm.

| Cat.# | Concentration | Aroclor | Range      |
|-------|---------------|---------|------------|
| 490   | LOW           | 1242    | 0.5-50 ppm |
| 491   | HIGH          | 1242    | 51-500 ppm |
| 496   | LOW           | 1248    | 0.5-50 ppm |
| 497   | HIGH          | 1248    | 51-500 ppm |
| 492   | LOW           | 1254    | 0.5-50 ppm |
| 493   | HIGH          | 1254    | 51-500 ppm |
| 494   | LOW           | 1260    | 0.5-50 ppm |
| 495   | HIGH          | 1260    | 51-500 ppm |

# WATER

# **PCBs in Water**

PCBs in water standards are sold individually in 2 mL flame-sealed ampules that yield 1 liter after dilution. Use with EPA methods 608, 8082, or other applicable methods. Each standard contains an Aroclor at 1-15  $\mu g/L$  after dilution.

| Cat. # | Aroclor | Range     |
|--------|---------|-----------|
| 860    | 1016    | 1-15 μg/L |
| 861    | 1221    | 1-15 μg/L |
| 862    | 1232    | 1-15 μg/L |
| 863    | 1242    | 1-15 μg/L |
| 864    | 1248    | 1-15 μg/L |
| 865    | 1254    | 1-15 μg/L |
| 866    | 1260    | 1-15 μg/L |

# OIL

# PCBs in Oil

PCBs in oil standards are sold individually in ready-to-use flame-sealed ampules with 5 g of oil. Use with EPA methods 8082, EPA-600/4-81-045, Sept. 1982, or other applicable methods. LOW LEVEL standards contain an Aroclor in the range 10-50 ppm. HIGH LEVEL standards contain an Aroclor in the range 51-500 ppm.

| Cat.# | Concentration | Aroclor | Range      |
|-------|---------------|---------|------------|
| 820   | LOW           | 1242    | 10-50 ppm  |
| 821   | HIGH          | 1242    | 51-500 ppm |
| 826   | LOW           | 1248    | 10-50 ppm  |
| 827   | HIGH          | 1248    | 51-500 ppm |
| 822   | LOW           | 1254    | 10-50 ppm  |
| 823   | HIGH          | 1254    | 51-500 ppm |
| 824   | LOW           | 1260    | 10-50 ppm  |
| 825   | HIGH          | 1260    | 51-500 ppm |







# Metals & Cyanide Blank Sand

# CRM

Cat. #058

One 40 g sand sample in a screw-cap bottle. The concentrations of all EPA/NELAC including the Priority Pollutant metal and cyanide analytes are below the CLP Required Detection Limits (CRDLs) except iron, which is <250 mg/kg.

# Metals & Cyanide Blank Soil

# CRM

Cat. #057

One 40 g soil sample in a screw-cap bottle. The concentrations of all of the following analytes are below the CLP CRDL's: antimony, arsenic, beryllium, cadmium, cobalt, mercury, nickel, selenium, silver, sodium, thallium and cyanide. The concentrations of the following analytes are below 10X the CLP CRDL's: barium, chromium, copper, lead, magnesium, potassium and vanadium. The concentrations of manganese and zinc are <750 mg/kg. The concentration range for aluminum, calcium, and iron is 3,000-25,000 mg/kg.





# UNDERGROUND STORAGE TANK

ERA's Underground Storage Tank (UST) products in water and soil matrices are purposefully designed to meet accreditation requirements for Petroleum Hydrocarbons analysis in various jurisdictions.



### 2015 UST in Water PT Scheme Schedule Scheme # **Opens** Closes Q WP 240 Jan 12 Feb 26 Q WP 243 Apr 13 May 28 Q WP 246 Jul 13 Aug 27 Q WP 249 Oct 16 Nov 30

Schedule subject to change – see ERA's website at www.eragc.com

# 2016 UST in Water PT Scheme Schedule

|   | Scheme # | Opens  | Closes |
|---|----------|--------|--------|
| Q | WP 252   | Jan 18 | Mar 3  |
| Q | WP 255   | Apr 11 | May 26 |
| Q | WP 258   | Jul 18 | Sep 1  |
| Q | WP 261   | Oct 14 | Nov 28 |

Schedule subject to change – see ERA's website at www.eragc.com

**CRM** – Certified Reference Material

PT - Proficiency Testing

**QR** – QuiK Response

All ERA UST PTs open quarterly (Q) unless otherwise noted.

ERA Alaska PTs are available at any time.

| Description                                 | CRM     | PT  |   | QR    | Page |
|---------------------------------------------|---------|-----|---|-------|------|
| Alaska BTEX in Water                        | 646*    | 474 | * | _     | 49   |
| Alaska DRO in Water                         | 647*    | 475 | * | _     | 49   |
| Alaska GRO in Water                         | 645*    | 473 | * | _     | 49   |
| BTEX & MTBE in Water                        | 760     | 643 | Q | 760QR | 54   |
| Diesel Range Organics in Water              | 764     | 641 | Q | 764QR | 54   |
| Gasoline Range<br>Organics in Water         | 762     | 640 | Q | 762QR | 54   |
| Massachusetts EPH in Water                  | 567     | 482 | Q | 567QR | 51   |
| Massachusetts VPH in Water                  | 566     | 481 | Q | 566QR | 51   |
| Texas High-Level<br>Fuels in Water          | 795     | 477 | Q | 795QR | 50   |
| Texas Low-Level<br>Fuels in Water           | 794     | 476 | Q | 794QR | 50   |
| Total Petroleum Hydrocarbons (TPH) in Water | 600/601 | 642 | Q | 602QR | 54   |
| Washington HEM/SGT-HEM                      | 519     | 489 | Q | 519QR | 50   |
| Wisconsin DRO                               | 772     | 648 | Q | 772QR | 50   |
| Wisconsin GRO/PVOC                          | 773     | 649 | Q | 773QR | 50   |

| 2015 Soil PT Scheme Schedule |                        |                           |                  |  |  |
|------------------------------|------------------------|---------------------------|------------------|--|--|
|                              | Scheme #               | Opens                     | Closes           |  |  |
| Q                            | SOIL 89                | Jan 19                    | Mar 5            |  |  |
| Q                            | SOIL 90                | Apr 20                    | Jun 4            |  |  |
| Q                            | SOIL 91                | Jul 20                    | Sep 3            |  |  |
| Q                            | SOIL 92                | Oct 19                    | Dec 3            |  |  |
| Sc                           | hedule subject to char | nge – see FRA's website a | at www.eragc.com |  |  |

| 2016 Soil PT Scheme Schedule |                         |                           |                  |  |  |
|------------------------------|-------------------------|---------------------------|------------------|--|--|
| Scheme # Opens Closes        |                         |                           |                  |  |  |
| Q                            | SOIL 93                 | Jan 25                    | Mar 10           |  |  |
| Q                            | SOIL 94                 | Apr 18                    | Jun 2            |  |  |
| Q                            | SOIL 95                 | Jul 25                    | Sep 8            |  |  |
| Q                            | SOIL 96                 | Oct 17                    | Dec 1            |  |  |
| S                            | chedule subject to char | nge – see ERA's website a | at www.eragc.com |  |  |

**CRM** – Certified Reference Material

PT - Proficiency Testing

**QR** – QuiK Response

All ERA UST PTs open quarterly ( ) unless otherwise noted. ERA Alaska PTs are available at any time. ERA New Jersey EPH in Soil PT studies open in April and October.

| Description                                   | CRM     | PT  |   | QR    | Page |
|-----------------------------------------------|---------|-----|---|-------|------|
| Alaska BTEX in Soil                           | 636*    | 470 | * | _     | 49   |
| Alaska DRO in Soil                            | 637*    | 471 | * | _     | 49   |
| Alaska GRO in Soil                            | 635*    | 469 | * | _     | 49   |
| Alaska RRO in Soil                            | 638*    | 472 | * | _     | 49   |
| Arizona TPH in Soil                           | 798     | 488 | Q | 798QR | 49   |
| BTEX & MTBE in Soil                           | 761     | 633 | Q | 761QR | 48   |
| Diesel Range<br>Organics in Soil              | 765     | 631 | Q | 765QR | 48   |
| Gasoline Range<br>Organics in Soil            | 763     | 630 | Q | 763QR | 48   |
| Massachusetts EPH in Soil                     | 569     | 484 | Q | 569QR | 51   |
| Massachusetts VPH in Soil                     | 568     | 483 | Q | 568QR | 51   |
| New Jersey EPH in Soil                        | 564     | 464 | * | 564QR | 51   |
| Texas High-Level<br>Fuels in Soil             | 797     | 479 | Q | 797QR | 50   |
| Texas Low-Level<br>Fuels in Soil              | 796     | 478 | Q | 796QR | 50   |
| Total Petroleum Hydrocarbons<br>(TPH) in Soil | 570/571 | 632 | Q | 572QR | 48   |

<sup>\*</sup>Reference Material [RM]

# QuiK Response PT

Need PT results fast? Available 52 weeks a year, QuiK Response PTs are on demand PTs that return final results within minutes of submitting your data online. In the US, please call ERA customer service at 800-372-0122 or 303-431-8454 to order. Outside of the US, please contact your authorized ERA sales partner to order.



US [T] 800.372.0122 (or) 303.431.8454 [E] info@eraqc.com UK [T] +44 (0) 161 946 2777 [E] saleseu@eraqc.com

# **UST IN SOIL**

# BTEX & MTBE in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #761 | Cat. #633 | Cat. #761QR |

One 2 mL flame-sealed ampule requires spiking onto the ten grams of provided certified clean soil. Includes all the BTEX compounds and MTBE at  $20-200~\mu g/kg$  (40-400  $\mu g/kg$  for Total Xylenes). Use with EPA method 8021, or other applicable methods.

# Gasoline Range Organics (GRO) in Soil

|--|

One flame-sealed ampule with 20 g of soil spiked with unleaded regular gasoline in the range 100-2,000 mg/kg. Use with purge and trap and modified EPA 8015, or other applicable GC/FID methods. Also use to test for BTEX in gasoline.

# Diesel Range Organics (DRO) in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #765 | Cat. #631 | Cat. #765QR |

One flame-sealed ampule with 20 g of soil spiked with #2 Diesel fuel in the range 300-3,000 mg/kg. Use with modified EPA 8015, or other applicable GC/FID methods.

# Total Petroleum Hydrocarbons (TPH) in Soil

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #570 | Cat. #632 | Cat. #572QR |

One screw-top bottle with 50 g of soil to be analyzed for total petroleum hydrocarbons (TPH). Use with EPA IR, gravimetric methods 8440 and 9071B, or other applicable methods.

| Non-polar Extractable Material (TPH) (Gr  | avimetric)300-3,000 mg/kg |
|-------------------------------------------|---------------------------|
| Non-polar Extractable Material (TPH) (IR) | )300-3.000 ma/ka          |

# Total Petroleum Hydrocarbons (TPH) in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #571 | Cat. #632 | Cat. #572QR |

One screw-top bottle contains 50 g of soil with TPH in the presence of interfering fatty acids. Use with EPA methods 8440, 9071B, or other applicable methods.

| Non-polar Extracta | able Material (TPI | H) (Gravin | netric) | 300-3,000 | mg/kg |
|--------------------|--------------------|------------|---------|-----------|-------|
| Non-polar Extracta | able Material (TPI | H) (IR)    |         | 300-3,000 | mg/kg |

# **UST IN WATER**

# BTEX & MTBE in Water

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #760 | Cat. #643 | Cat. #760QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Use with EPA methods 602, 8021, or other applicable methods. Includes all BTEX compounds and MTBE at 5-300  $\mu$ g/L after dilution.

# Gasoline Range Organics (GRO) in Water

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #762 | Cat. #640 | Cat. #762QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with both purge and trap, and modified EPA 8015, or other applicable GC/FID methods to test for GRO at  $400-4,000~\mu g/L$ . Also use to test for BTEX in gasoline.

# Diesel Range Organics (DRO) in Water

| <b>CRM</b><br>Cat. #764 | <b>PT Q</b> Cat. #641 | <b>QR</b><br>Cat. #7640R |
|-------------------------|-----------------------|--------------------------|
| Cal. #104               | Cat. #041             | Cat. #1 04QIV            |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Use with modified EPA 8015, or other applicable GC/FID methods. Includes #2 Diesel at  $800\text{-}6,000~\mu\text{g/L}$ .

# Total Petroleum Hydrocarbons (TPH) in Water

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #600 | Cat. #642 | Cat. #602QR |

One liter whole-volume bottle is ready to analyze for total petroleum hydrocarbons (TPH) without interferring fatty acids. Use with EPA methods 418.1, 1664, 5520, or other applicable methods.

# Total Petroleum Hydrocarbons (TPH) in Water

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #601 | Cat. #642 | Cat. #602QR |

One liter whole-volume bottle is ready to analyze for TPH in water in the presence of interfering fatty acids. Use with EPA methods 418.1, 1664, 5520, 8440, or other applicable methods.



# ALASKA UST IN WATER

# Alaska GRO in Water

**RM** PT **■**Cat. #645 Cat. #473

One 2 mL flame-sealed ampule. Use with method AK101 for unleaded regular gasoline at 100-500  $\mu$ g/L after dilution.

# Alaska DRO in Water

| RM        | PT *      |
|-----------|-----------|
| Cat. #647 | Cat. #475 |

One 2 mL flame-sealed ampule. Use with method AK102 for No. 2 Diesel at  $800\text{-}2,300~\mu g/L$  after dilution.

# **Alaska BTEX in Water**

| RM        | PT *      |
|-----------|-----------|
| Cat. #646 | Cat. #474 |

One 2 mL flame-sealed ampule. Use with method AK101 for all BTEX analytes at  $5-30~\mu g/L$  after dilution.

ERA Alaska UST PTs are available at any time.

# ALASKA UST IN SOIL

# Alaska GRO in Soil

| RM        | PT *      |
|-----------|-----------|
| Cat. #635 | Cat. #469 |

One 20 mL flame-sealed ampule with 10 g of soil and 10 mL of methanol with unleaded regular gasoline at 30-1,500 mg/kg. Use with method AK101.

# Alaska DRO in Soil

| RM        | PT *      |
|-----------|-----------|
| Cat. #637 | Cat. #471 |

One flame-sealed ampule with 20 g of soil spiked with No. 2 Diesel fuel at 30-1,500 mg/kg. Use with method AK102.

# Alaska RRO in Soil

| RM        | PT *      |
|-----------|-----------|
| Cat. #638 | Cat. #472 |

One flame-sealed ampule with 20~g of soil with Residual Range Organic fuels at 150-2,000~mg/kg. Use with method AK103.

# Alaska BTEX in Soil

| RM        | PT *      |
|-----------|-----------|
| Cat. #636 | Cat. #470 |

One 2 mL flame-sealed ampule along with clean soil matrix for spiking. Use with method AK101 for all BTEX analytes at 5-100 mg/kg after spiking.

# ARIZONA UST IN SOIL

# Arizona TPH in Soil

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #798 | Cat. #488 | Cat. #7980R |

One ready-to-use flame-sealed ampule with 30 g of soil with Oil Range Organics and No. 2 Diesel fuel. Use with method 8015AZ for TPH in the range 300-400 mg/kg. Also includes two carbon ranges.





# TEXAS TPH IN WATER

All Texas TPH PT standards are designed for use with TNRCC 1005 method. The standards meet the requirements of all states that accredit for these methods including Texas, Louisiana, and Oklahoma.

# Texas Low-Level Fuels (TPH) in Water

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #794 | Cat. #476 | Cat. #794QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Contains unleaded regular gasoline and No. 2 Diesel Fuel resulting in TPH in the range 5-10 mg/L.

# Texas High-Level Fuels (TPH) in Water

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #795 | Cat. #477 | Cat. #795QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Contains unleaded regular gasoline and No. 2 Diesel Fuel resulting in TPH in the range 20-100~mg/L.

# TEXAS TPH IN SOIL

# Texas Low-Level Fuels (TPH) in Soil

| CRM       | PT Q      | OR          |
|-----------|-----------|-------------|
| Cat. #796 | Cat. #478 | Cat. #796QR |

One ready-to-use flame-sealed ampule with 20 g of soil with unleaded gasoline and No. 2 Diesel Fuel for TPH in the range 50-100 mg/kg.

# Texas High-Level Fuels (TPH) in Soil

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #797 | Cat. #479 | Cat. #797QR |

One ready-to-use flame-sealed ampule with 20~g of soil with unleaded gasoline and No. 2 Diesel Fuel for TPH in the range 1,000-20,000~mg/kg.

# WISCONSIN GRO/PVOC/DRO METHOD UST

All Wisconsin UST PT standards are designed for use with Wisconsin GRO/PVOC or DRO methods. The standards meet the requirements of all states that accredit for these methods including Wisconsin and Minnesota.

# Wisconsin Gasoline Range Organics (GRO/PVOC) in Water

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #773 | Cat. #649 | Cat. #773QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Includes ten gasoline range synthetic organic compounds as defined by Wisconsin. Use with Wisconsin GRO/PVOC method.

# Wisconsin Diesel Range Organics (DRO) in Water

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #772 | Cat. #648 | Cat. #772QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Includes ten Diesel range synthetic organic compounds in the range 200-600  $\mu$ g/L. Use with the Wisconsin DRO method.

# WASHINGTON HEM/SGT-HEM METHOD UST

The Washington UST PT standard is designed for use with EPA Method 1664 for HEM/SGT-HEM.

# Washington HEM/SGT-HEM

| CRM       | PT Q      | OR          |
|-----------|-----------|-------------|
|           |           | •           |
| Cat. #519 | Cat. #489 | Cat. #519QR |
|           |           |             |

One 5 mL flame-sealed ampule yields up to 2 liters after dilution. Use with EPA method 1664 to measure HEM/SGT-HEM at 5-100 mg/L.



# **NEW JERSEY EPH**

The New Jersey EPH in Soil standard is designed for use with the NJ Extractable Petroleum Hydrocarbons method.

# New Jersey EPH in Soil

| CRM       | PT *      | QR          |
|-----------|-----------|-------------|
| Cat. #564 | Cat. #464 | Cat. #564QR |

One flame-sealed ampule with 20 g soil containing EPH in the range of 300-3000 mg/kg.

The NJ EPH in Soil PT studies open in April and October.



# MASSACHUSETTS HYDROCARBONS IN WATER

All Massachusetts USTPT standards are designed for use with Massachusetts Volatile Petroleum Hydrocarbon or Extractable Petroleum Hydrocarbon methods. The standards meet the requirements of all states that accredit for these methods including Massachusetts, North Carolina, and Washington when reporting the Massachusetts carbon ranges.

# Massachusetts VPH in Water

| <b>CRM</b> | <b>PT Q</b> | <b>QR</b>   |
|------------|-------------|-------------|
| Cat. #566  | Cat. #481   | Cat. #566QR |

One 2 mL flame-sealed ampule yields in excess of 200 mL after dilution. Contains volatile petroleum hydrocarbon fuels (VPH) in the range 400-4,000  $\mu g/L$ . Use with the Massachusetts Volatile Petroleum Hydrocarbon method for multiple carbon ranges, BTEX compounds and MTBE.

# Massachusetts EPH in Water

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #567 | Cat. #482 | Cat. #567QR |

One 2 mL flame-sealed ampule yields up to 2 liters after dilution. Contains extractable petroleum hydrocarbon fuels (EPH) in the range 800-6,000  $\mu g/L$ . Use with the Massachusetts Extractable Petroleum Hydrocarbon method for multiple carbon ranges and PAH compounds.

# MASSACHUSETTS HYDROCARBONS IN SOIL

# Massachusetts VPH in Soil

| <b>CRM</b><br>Cat. #568 | <b>PT Q</b> Cat. #483 | <b>QR</b><br>Cat. #5680R |
|-------------------------|-----------------------|--------------------------|
| Cat. π300               | Cat. #403             | Cat. #300QIT             |

One flame-sealed ampule with 20 g soil with VPH fuels. Contains volatile petroleum hydrocarbon fuels (VPH) in the range 100-2,000 mg/kg. Use with the Massachusetts Volatile Petroleum Hydrocarbon method for multiple carbon ranges, BTEX compounds and MTBE.

# Massachusetts EPH in Soil

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #569 | Cat. #484 | Cat. #569QR |

One flame-sealed ampule with 20 g soil with EPH fuels. Contains extractable petroleum hydrocarbon fuels (EPH) in the range 300-3,000 mg/kg. Use with the Massachusetts Extractable Petroleum Hydrocarbon method for multiple carbon ranges and PAH compounds.



# AIR & EMISSIONS Matrices consisting of organic, inorganic, and particulate matter for testing emissions and ambient air. Standards are designed to meet regulations of the United States Environmental Protection Clean Air Act and may be used to satisfy PT requirements worldwide.

| 2015 Air & Emissions PT Scheme Schedule                         |          |        |        |  |
|-----------------------------------------------------------------|----------|--------|--------|--|
|                                                                 | Scheme # | Opens  | Closes |  |
| Q                                                               | AE 31    | Jan 26 | Mar 12 |  |
| Q                                                               | AE 32    | Apr 27 | Jun 11 |  |
| Q                                                               | AE 33    | Jul 27 | Sep 10 |  |
| Q                                                               | AE 34    | Oct 26 | Dec 10 |  |
| Schedule subject to change — see ERA's website at www.eraqc.com |          |        |        |  |

| 2016 Air & Emissions P1 Scheme Schedule                         |          |        |        |
|-----------------------------------------------------------------|----------|--------|--------|
|                                                                 | Scheme # | Opens  | Closes |
| Q                                                               | AE 35    | Jan 29 | Mar 14 |
| Q                                                               | AE 36    | Apr 25 | Jun 9  |
| Q                                                               | AE 37    | Jul 29 | Sep 12 |
| Q                                                               | AE 38    | Oct 24 | Dec 8  |
| Schedule subject to change – see ERA's website at www.eraqc.com |          |        |        |

2016 At C F.... DT C.b.... C.b. d.d

| Description                                              | CRM  | PT     | QR     | Page |
|----------------------------------------------------------|------|--------|--------|------|
| Aldehydes and<br>Ketones on Sorbent                      | 1114 | 1014 Q | 1114QR | 55   |
| Ammonia in Impinger<br>Solution                          | 1145 | 1045 Q | 1145QR | 57   |
| Chromium on<br>Filter Paper                              | 1131 | 1031 0 | 1131QR | 56   |
| Fluoride in Impinger<br>Solution                         | 1141 | 1041 Q | 1141QR | 57   |
| Hexavalent Chromium in<br>Impinger Solution              | 1132 | 1032 0 | 1132QR | 56   |
| Hydrogen Halides<br>and Halogens in<br>Impinger Solution | 1140 | 1040 Q | 1140QR | 57   |
| Lead in<br>Impinger Solution                             | 1130 | 1030 Q | 1130QR | 56   |
| Lead on Filter Paper                                     | 1129 | 1029 0 | 1129QR | 56   |
| Mercury in<br>Impinger Solution                          | 1128 | 1028 0 | 1128QR | 56   |
| Mercury on Filter Paper                                  | 1127 | 1027 Q | 1127QR | 56   |
| Metals in<br>Impinger Solution                           | 1126 | 1026 Q | 1126QR | 56   |
| Metals on Filter Paper                                   | 1125 | 1025 Q | 1125QR | 56   |

**CRM** – Certified Reference Material

**PT** – Proficiency Testing

**QR** – QuiK Response

• All ERA Air & Emissions PTs open quarterly.

| Description                                                 | CRM   | PT            | QR     | Page |
|-------------------------------------------------------------|-------|---------------|--------|------|
| Nitrogen Oxide in<br>Impinger Solution                      | 1142  | 1042 0        | 1142QR | 57   |
| Organochlorine Pesticides on Polyurethane Foam              | 1111  | 1011 0        | 1111QR | 55   |
| PAHs on<br>Polyurethane Foam                                | 1113  | 1013 Q        | 1113QR | 55   |
| Particulate Matter in<br>Impinger Solution                  | 1151  | 1051 Q        | 1151QR | 57   |
| Particulate Matter<br>on Filter Paper                       | 1150  | 1050 Q        | 1150QR | 57   |
| PCBs on<br>Polyurethane Foam                                | 1112  | 1012 0        | 1112QR | 55   |
| Semivolatiles on<br>Polyurethane Foam                       | 1110  | 1010 Q        | 1110QR | 55   |
| Sulfur Dioxide in<br>Impinger Solution                      | 1143  | 1043 <b>Q</b> | 1143QR | 57   |
| Sulfuric Acid and<br>Sulfur Dioxide in<br>Impinger Solution | 1144  | 1044 Q        | 1144QR | 57   |
| Volatiles in<br>Gas Cylinder                                | 1100  | 1000 Q        | 1100QR | 54   |
| Volatiles on Sorbent                                        | 1101* | 1001 Q        | 1101QR | 54   |

<sup>\*</sup>Reference Material [RM]



# QuiK Response PT

Need PT results fast? Available 52 weeks a year, QuiK Response PTs are on demand PTs that return final results within minutes of submitting your data online. In the US, please call ERA customer service at 800-372-0122 or 303-431-8454 to order. Outside of the US, please contact your authorized ERA sales partner to order.



# **VOLATILES**

# Volatiles in Gas Cylinder\*

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1100 | Cat. #1000 | Cat. #1100QR |

One pressurized gas cylinder containing 25 liter of gas at 500 psig (34 bar) for use with EPA methods TO-14, TO-15, or other applicable methods. Contains at least 10 analytes, randomly selected from the list below, at 2-30 ppbv (4-60 ppbv for Total Xylenes).

| Benzene                        | 1,1-Dichloroethane            |
|--------------------------------|-------------------------------|
| Bromodichloromethane           | 1,2-Dichloroethane            |
| Bromoform                      | 1,1-Dichloroethylene          |
| Bromomethane                   | cis-1,2-Dichloroethylene      |
| 2-Butanone (MEK)               | 1,2-Dichloropropane           |
| Methyl tert-butyl ether (MTBE) | cis-1,3-Dichloropropylene     |
| Carbon tetrachloride           | trans-1,3-Dichloropropylene   |
| Chlorobenzene                  | 1,2-Dichlorotetrafluoroethane |
| Chlorodibromomethane           | (Freon 114)                   |
| Chloroethane                   | Ethylbenzene                  |
| Chloroform                     | p-Ethyltoluene                |
| Chloromethane                  | n-Heptane                     |
| Cyclohexane                    | Hexachlorobutadiene           |
| 1,2-Dibromoethane (EDB)        | n-Hexane                      |
| 1,2-Dichlorobenzene            | 2-Hexanone                    |
| 1,4-Dichlorobenzene            | 4-Methyl-2-pentanone (MIBK)   |
| Dichlorodifluoromethane        | Propylene                     |
| (Freon 12)                     | 1,1,1,2-Tetrachloroethane     |
|                                | 1,1,2,2-Tetrachloroethane     |

Tetrachloroethylene Toluene

1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane

Trichlorofluoromethane (Freon 11) Trichlorotrifluoromethane

(Freon 113)

1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl bromide

Vinyl chloride Xylenes, total

\*Volatiles in Gas Cylinder ships as dangerous goods.

# **Volatiles on Sorbent**

| RM         | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1101 | Cat. #1001 | Cat. #1101QR |

One 2 mL flame-sealed ampule for spiking client-specific sorbent. Use with EPA methods TO-17, 0030, 0031, or other applicable methods. Contains at least 24 analytes, randomly selected from the list below, at 50–2,000 ng/sample (200–3.000 ng/sample for Total Xulenes) after preparation.

| 200–3,000 ng/sample for     | lotal Xylenes) after prepa |
|-----------------------------|----------------------------|
| Acetone                     | 1,2-Dibromoethane (EDB)    |
| Acetonitrile                | Dibromomethane             |
| Acrolein                    | 1,2-Dichlorobenzene        |
| Acrylonitrile               | 1,3-Dichlorobenzene        |
| Benzene                     | 1,4-Dichlorobenzene        |
| Bromodichloromethane        | Dichlorodifluoromethane    |
| Bromoform                   | (Freon 12)                 |
| Bromomethane                | 1,1-Dichloroethane         |
| 2-Butanone (MEK)            | 1,2-Dichloroethane         |
| Carbon disulfide            | 1,1-Dichloroethene         |
| Carbon tetrachloride        | cis-1,2-Dichloroethene     |
| Chlorobenzene               | trans-1,2-Dichloroethene   |
| Chlorodibromomethane        | 1,2-Dichloropropane        |
| Chloroethane                | cis-1,3-Dichloropropene    |
| 2-Chloroethyl vinyl ether   | trans-1,3-Dichloropropene  |
| Chloroform                  | Ethylbenzene               |
| Chloromethane               | Hexachlorobutadiene        |
| 1,2-Dibromo-3-chloropropane | 2-Hexanone                 |
| (DBCP)                      | Methylene chloride         |
|                             |                            |
|                             |                            |

4-Methyl-2-pentanone (MIBK) Methyl tert-butyl ether

(MTBE) Naphthalene Styrene

1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene

Toluene

1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethlyene Trichlorofluoromethane 1,2,3-Trichloropropane Vinyl acetate Vinyl chloride Xylenes, total

Particulate Matter in Impinger Solution Study AE 15 Lot No. E015-1151



# **SEMIVOLATILES**

# Semivolatiles on Polyurethane Foam

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1110 | Cat. #1010 | Cat. #11100R |

Two 2 mL flame-sealed ampules plus one polyurethane foam. Use with EPA method 0010, or other applicable methods. Contains at least 42 analytes, randomly selected from the list below, at 10-225  $\mu$ g/sample (200-1,000  $\mu$ g/sample for Benzidine) after preparation.

| crizianio, arter proparation | •                         |                            |
|------------------------------|---------------------------|----------------------------|
| Acenaphthene                 | 1,2-Dichlorobenzene       | N-Nitrosodiphenylamine     |
| Acenaphthylene               | 1,3-Dichlorobenzene       | N-Nitroso-di-n-propylamine |
| Aniline                      | 1,4-Dichlorobenzene       | Pentachlorobenzene         |
| Anthracene                   | 3,3'-Dichlorobenzidine    | Phenanthrene               |
| Benzidine                    | Diethyl phthalate         | Pyrene                     |
| Benzo(a)anthracene           | Dimethyl phthalate        | Pyridine                   |
| Benzo(b)fluoranthene         | 2,4-Dinitrotoluene        | o-Toluidine                |
| Benzo(k)fluoranthene         | 2,6-Dinitrotoluene        | 1,2,4,5-Tetrachlorobenzene |
| Benzo(g,h,i)perylene         | Di-n-octyl phthalate      | 1,2,4-Trichlorobenzene     |
| Benzo(a)pyrene               | Fluoranthene              | Benzoic Acid               |
| Benzyl alcohol               | Fluorene                  | 4-Chloro-3-methylphenol    |
| 4-Bromophenyl phenyl ether   | Hexachlorobenzene         | 2-Chlorophenol             |
| Butyl benzyl phthalate       | Hexachlorobutadiene       | 2,4-Dichlorophenol         |
| Carbazole                    | Hexachlorocyclopentadiene | 2,6-Dichlorophenol         |
| 4-Chloroaniline              | Hexachloroethane          | 2,4-Dimethylphenol         |
| Bis(2-chloroethoxy)methane   | Indeno(1,2,3-cd)pyrene    | 2,4-Dinitrophenol          |
| Bis(2-chloroethyl)ether      | Isophorone                | 2-Methyl-4,6-dinitrophenol |
| Bis(2-chloroisopropyl)ether  | 2-Methylnaphthalene       | 2-Methylphenol (o-Cresol)  |
| Bis(2-ethylhexyl)phthalate   | Naphthalene               | 4-Methylphenol (p-Cresol)  |
| 1-Chloronaphthalene          | 2-Nitroaniline            | 2-Nitrophenol              |
| 2-Chloronaphthalene          | 3-Nitroaniline            | 4-Nitrophenol              |
| 4-Chlorophenyl phenyl ether  | 4-Nitroaniline            | Pentachlorophenol          |
| Chrysene                     | Nitrobenzene              | Phenol                     |
| Dibenz(a,h)anthracene        | N-Nitrosodiethylamine     | 2,3,4,6-Tetrachlorophenol  |
| Dibenzofuran                 | N-Nitrosodimethylamine    | 2,4,5-Trichlorophenol      |
|                              |                           |                            |

# Organochlorine Pesticides on Polyurethane Foam

(NDMA)

Di-n-butyl phthalate

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1111 | Cat. #1011 | Cat. #1111QR |

One 2 mL flame-sealed ampule plus one polyurethane foam. Use with EPA methods TO-04A, TO-10A, or other applicable methods. Contains at least 16 analytes, randomly selected from the list below, at 0.5-20  $\mu$ g/sample after preparation.

| Aldrin              | 4,4'-DDD           | Endrin                    |
|---------------------|--------------------|---------------------------|
| alpha-BHC           | 4,4'-DDE           | Endrin aldehyde           |
| beta-BHC            | 4,4'-DDT           | Endrin ketone             |
| delta-BHC           | Dieldrin           | Heptachlor                |
| gamma-BHC (Lindane) | Endosulfan I       | Heptachlor epoxide (beta) |
| alpha-Chlordane     | Endosulfan II      | Methoxychlor              |
| gamma-Chlordane     | Endosulfan sulfate |                           |
|                     |                    |                           |

# PCBs on Polyurethane Foam

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1112 | Cat. #1012 | Cat. #1112QR |

One 2 mL flame-sealed ampule plus one polyurethane foam. Use with EPA methods TO-04A, TO-10A, or other applicable methods. Contains one Aroclor, randomly selected from the list below, at  $1-15~\mu g/s$ ample after preparation.

| Aroclor 1016 | Aroclor 1242 | Aroclor 126 |
|--------------|--------------|-------------|
| Aroclor 1221 | Aroclor 1248 |             |
| Aroclor 1232 | Aroclor 1254 |             |

# PAHs on Polyurethane Foam

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1113 | Cat. #1013 | Cat. #1113QR |

One 2 mL flame-sealed ampule plus one polyurethane foam. Use with EPA method TO-13A, or other applicable methods. Contains at least 13 analytes, randomly selected from the list below, at  $10-200~\mu g/s$ ample after preparation.

| Acenaphthene         | Benzo(g,h,i)perylene  | Fluorene               |
|----------------------|-----------------------|------------------------|
| Acenaphthylene       | Benzo(a)pyrene        | Indeno(1,2,3-cd)pyrene |
| Anthracene           | Chrysene              | Naphthalene            |
| Benzo(a)anthracene   | Dibenz(a,h)anthracene | Phenanthrene           |
| Benzo(b)fluoranthene | Fluoranthene          | Pyrene                 |
| Benzo(k)fluoranthene |                       |                        |

# Aldehydes & Ketones on Sorbent

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1114 | Cat. #1014 | Cat. #1114QR |

One 2 mL flame-sealed ampule to be spiked onto sorbent. Use with EPA method TO-11A, or other applicable methods. Contains at least 4 analytes, randomly selected from the list below, at 0.5-10  $\mu$ g/sample after preparation.

| Acetaldehyde            | Crotonaldehyde           | Propionaldehyde (propanal) |
|-------------------------|--------------------------|----------------------------|
| Acetone                 | 2,5-Dimethylbenzaldehyde | o-Tolualdehyde             |
| Benzaldehyde            | Formaldehyde             | m-Tolualdehyde             |
| 2-Butanone (MEK)        | Hexaldehyde (hexanal)    | p-Tolualdehyde             |
| Buturaldehude (butanal) | Isovaleraldehude         | Valeraldehude (pentanal)   |



2,4,6-Trichlorophenol

# **METALS**

# Metals on Filter Paper

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1125 | Cat. #1025 | Cat. #1125QR |

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm tissue quartz filter ready for use with EPA method 29 or other applicable methods.

| approducto morno doi |                  |
|----------------------|------------------|
| Antimony             | 25-250 μg/filter |
| Arsenic              | 20-250 μg/filter |
| Barium               |                  |
| Beryllium            | 10-250 μg/filter |
| Cadmium              |                  |
| Chromium             | 15-250 μg/filter |
| Cobalt               | 10-250 μg/filter |
| Copper               | 10-250 μg/filter |
| Lead                 |                  |
| Manganese            | 10-250 μg/filter |
| Nickel               | 20-250 μg/filter |
| Phosphorus           | 10-250 μg/filter |
| Selenium             | 20-250 µg/filter |
| Silver               | 30-250 µg/filter |
| Thallium             | 30-250 µg/filter |
| Zinc                 | 20-250 µg/filter |

# Metals in Impinger Solution

| CRM        | PTQ        | QR           |
|------------|------------|--------------|
| Cat. #1126 | Cat. #1026 | Cat. #1126QR |

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA method 29, or other applicable methods.

| • •        |               |
|------------|---------------|
| Antimony   | 0.25-20 μg/mL |
| Arsenic    | 0.2-20 μg/mL  |
| Barium     | 0.15-25 μg/mL |
| Beryllium  | 0.05-20 μg/mL |
| Cadmium    | 0.1-20 μg/mL  |
| Chromium   | 0.2-20 μg/mL  |
| Cobalt     | 0.1-25 μg/mL  |
| Copper     |               |
| Lead       | 0.2-20 μg/mL  |
| Manganese  | 0.1-20 μg/mL  |
| Nickel     | 0.15-30 μg/mL |
| Phosphorus | 0.15-25 μg/mL |
| Selenium   | 0.15-25 μg/mL |
| Silver     | 0.5-20 μg/mL  |
| Thallium   | 0.15-25 μg/mL |
| Zinc       | 0.15-25 μg/mL |
|            |               |

# Mercury on Filter Paper

| CRM        | PTQ        | QR           |
|------------|------------|--------------|
| Cat. #1127 | Cat. #1027 | Cat. #1127QR |

One 2 mL flame-sealed ampule containing approximately 2 mL of standard concentrate and a 50 mm polystyrene petri dish containing a single 47 mm glass fiber filter. Sample is ready for use with EPA method 29, or other applicable methods.

| Mercury | 1-75 µg/filter |
|---------|----------------|
|---------|----------------|

# Mercury in Impinger Solution

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1128 | Cat. #1028 | Cat. #1128QR |

One impinger solution sample packaged in a 15~mL screw-top vial containing approximately 14~mL of standard concentrate for use with EPA methods 29, 101a, or other applicable methods.

# Lead on Filter Paper

| CRM        | PTQ        | QR           |
|------------|------------|--------------|
| Cat. #1129 | Cat. #1029 | Cat. #1129QR |

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm tissue quartz filter spiked with lead ready-for-use with EPA method 12 or other applicable methods.

# Lead in Impinger Solution

| CRM        | PTQ        | QR           |
|------------|------------|--------------|
| Cat. #1130 | Cat. #1030 | Cat. #1130QR |

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA method 12, or other applicable methods.

# Chromium on Filter Paper

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1131 | Cat. #1031 | Cat. #1131QR |

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm fiber film filter for use with CARB method 425, or other applicable methods.

# Hexavalent Chromium in Impinger Solution

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1132 | Cat. #1032 | Cat. #1132QR |

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA method 0061/7199, or other applicable methods.

Hexavalent chromium.......45-880 µg/L



# INORGANICS

# Hydrogen Halides & Halogens in Impinger Solution

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1140 | Cat. #1040 | Cat. #1140QR |

Two impinger solution samples packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA methods 26, 26a, or other applicable methods.

| Total halides     | 15-1500 mg/L |
|-------------------|--------------|
| Total halogens    | 10-200 mg/L  |
| Hydrogen chloride | 5-500 mg/L   |
| Hydrogen fluoride | 5-500 mg/L   |
| Hydrogen bromide  | 5-500 mg/L   |
| Bromine           | 5-100 mg/L   |
| Chlorine          | 5-100 mg/L   |

# Fluoride in Impinger Solution

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1141 | Cat. #1041 | Cat. #1141QR |

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA methods 13a, 13b, 14, or other applicable methods.

# Nitrogen Oxide in Impinger Solution

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1142 | Cat. #1042 | Cat. #11420R |

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA method 7, or other applicable methods.

# Sulfur Dioxide in Impinger Solution

| CRM        | PT Q       | QR           |  |
|------------|------------|--------------|--|
| Cat. #1143 | Cat. #1043 | Cat. #1143QR |  |

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA method 6, or other applicable methods.

Sulfur dioxide 50-2000 mg/dscm

# Sulfuric Acid & Sulfur Dioxide in Impinger Solution

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1144 | Cat. #1044 | Cat. #1144QR |

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA method 8, or other applicable methods.

Sulfuric acid.....

# Ammonia in Impinger Solution

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1145 | Cat. #1045 | Cat. #1145QR |

One impinger solution sample packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate for use with EPA CTM 027, or other applicable methods.

Ammonium .....

# Particulate Matter on Filter Paper

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1150 | Cat. #1050 | Cat. #1150QR |

One filter paper sample packaged in a 50 mm polystyrene petri dish containing a single 47 mm tissue quartz filter ready for use with EPA methods 5, 5A, 5B, 5D, 5F, or other applicable methods.

Particulate matter.....

# Particulate Matter in Impinger Solution

US [T] 800.372.0122 (or) 303.431.8454 [E] info@eragc.com UK [T] +44 (0) 161 946 2777 [E] saleseu@eragc.com

| CRM        | PT Q       | QR           |
|------------|------------|--------------|
| Cat. #1151 | Cat. #1051 | Cat. #1151QR |

One impinger solution sample packaged in a 250 mL polyethylene bottle containing approximately 250 mL of standard ready for use with EPA methods 5, 5A, 5B, 

# RADIOCHEMISTRY

Matrices in soil, vegetation, air filters, and water for monitoring of radiochemicals.



# 2015 Radiochemistry PT Scheme Schedule

|   | Scheme # | Opens | Closes |
|---|----------|-------|--------|
| Q | RAD 100  | Jan 5 | Feb 19 |
| Q | RAD 101  | Apr 6 | May 21 |
| Q | RAD 102  | Jul 6 | Aug 20 |
| Q | RAD 103  | Oct 5 | Nov 19 |

Schedule subject to change – see ERA's website at www.eragc.com

**CRM** – Certified Reference Material

PT – Proficiency Testing

**QR** – QuiK Response

• All ERA Radiochem PTs open quarterly.

■ All ERA MRAD PTs open in March and September.

# 2016 Radiochemistry PT Scheme Schedule

|   | Scheme # | Opens  | Closes |
|---|----------|--------|--------|
| Q | RAD 104  | Jan 11 | Feb 25 |
| Q | RAD 105  | Apr 4  | May 19 |
| Q | RAD 106  | Jul 11 | Aug 25 |
| Q | RAD 107  | Oct 7  | Nov 21 |

Schedule subject to change – see ERA's website at www.eraqc.com

| Description      | CRM | PT           | QR    | Page |
|------------------|-----|--------------|-------|------|
| Gamma Emitters   | 758 | 808 0        | 758QR | 60   |
| Gross Alpha/Beta | 759 | 809 Q        | 759QR | 60   |
| lodine-131       | 750 | 810 Q        | 750QR | 60   |
| Naturals         | 751 | 811 <b>Q</b> | 751QR | 60   |
| Strontium-89/90  | 757 | 807 <b>Q</b> | 757QR | 60   |
| Tritium          | 752 | 812 <b>Q</b> | 752QR | 60   |

| 2015 MRAD PT Scheme Schedule |          |        |        |
|------------------------------|----------|--------|--------|
|                              | Scheme # | Opens  | Closes |
| *                            | MRAD 22  | Mar 16 | May 15 |
| *                            | MRAD 23  | Sep 21 | Nov 20 |
|                              |          |        |        |

2 studies per year – open for 60 days Schedule subject to change – see ERA's website at www.eragc.com

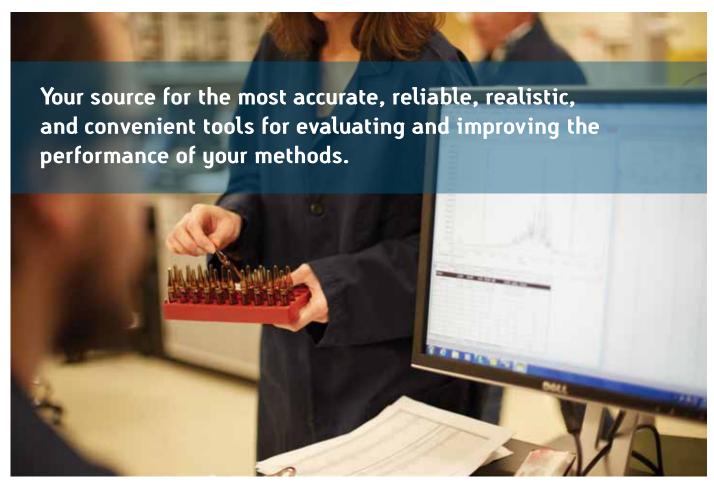
| 2016 M | 2016 MRAD PT Scheme Schedule |        |        |
|--------|------------------------------|--------|--------|
|        | Scheme #                     | Opens  | Closes |
| *      | MRAD 24                      | Mar 14 | May 13 |
| *      | MRAD 25                      | Sep 19 | Nov 18 |

2 studies per year – open for 60 days Schedule subject to change – see ERA's website at www.eraqc.com

**CRM** – Certified Reference Material

PT - Proficiency Testing

**QR** – QuiK Response


All ERA WS Radchem PTs open guarterly.

■ All ERA MRAD PTs open in March and September.

| Description                    | CRM | PT    | QR    | Page |
|--------------------------------|-----|-------|-------|------|
| Air Filter Gross<br>Alpha/Beta | 607 | 801 🔹 | 607QR | 62   |
| Air Filter Radionuclides       | 606 | 800 🔹 | 606QR | 62   |
| Soil Radionuclides             | 608 | 802 🔹 | 608QR | 62   |
| Vegetation<br>Radionuclides    | 609 | 803 🔹 | 609QR | 62   |
| Water Gross<br>Alpha/Beta      | 615 | 805 🛎 | 615QR | 63   |
| Water<br>Radionuclides         | 617 | 804 🔹 | 617QR | 63   |
| Water Tritium                  | 616 | 806 🔹 | 616QR | 63   |

# **QuiK Response PT**

Need PT results fast? Available 52 weeks a year, QuiK Response PTs are on demand PTs that return final results within minutes of submitting your data online. In the US, please call ERA customer service at 800-372-0122 or 303-431-8454 to order. Outside of the US, please contact your authorized ERA sales partner to order.



# WS RADCHEM

All Radchem standards are provided as convenient, easy-to-prepare concentrates except for Tritium, which is provided as a whole-volume sample.

# Gamma Emitters

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #758 | Cat. #808 | Cat. #758QR |

One 12 mL screw-top vial yields up to 2 liters after dilution.

| Barium-133 | 10-100 pCi/L |
|------------|--------------|
| Cesium-134 |              |
| Cesium-137 |              |
| Cobalt-60  | 10-120 pCi/L |
| Zinc-65    | 30-360 pCi/L |

# Gross Alpha/Beta

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #759 | Cat. #809 | Cat. #759QR |

One 12 mL screw-top vial yields up to 1 liter after dilution.

| Gross Alpha as Thorium-230 | <br>7-75 pCi/L |
|----------------------------|----------------|
| Gross Beta as Cesium-137   | <br>8-75 pCi/L |

# **Naturals**

| CRM       | PTQ       | QR          |
|-----------|-----------|-------------|
| Cat. #751 | Cat. #811 | Cat. #751QR |

One 12 mL screw-top vial yields up to 8 liters after dilution.

| Radium-226         | 1-20 pCi/L |
|--------------------|------------|
| Radium-228         | 2-20 pCi/L |
| Uranium (Nat)      | 2-70 pCi/L |
| Uranium (Nat) mass | 3-104 μg/L |

# **Tritium**

| CRM       | PT Q      | QR          |
|-----------|-----------|-------------|
| Cat. #752 | Cat. #812 | Cat. #752QR |

One 250 mL whole-volume bottle is ready to analyze as received. Includes Tritium at 1,000-24,000 pCi/L.

# lodine-131

| <b>CRM</b><br>Cat. #750 | <b>PT Q</b> Cat. #810 | <b>QR</b><br>Cat. #750QR |
|-------------------------|-----------------------|--------------------------|

One 12 mL screw-top vial yields up to 2 liters after dilution. Contains Iodine-131 within the range 3-30 pCi/L. Due to short half-life, CRMs, PTs and QRs are available only during January, April, July, and October.

# Strontium-89/90

| <b>CRM</b><br>Cat. #757 | <b>PT Q</b> Cat. #807 | <b>QR</b><br>Cat. #757QR |
|-------------------------|-----------------------|--------------------------|

One 12 mL screw-top vial yields up to 2 liters after dilution.

| Strontium-89   | 70 pCi/L |
|----------------|----------|
| Strontium-903- |          |







# RADCHEM LAB CONTROL & MATRIX SPIKING (LCS/MS)

ERA's radiochemistry LCS/MS standards are prepared according to your specifications at activity levels that enable you to directly fortify your batch laboratory control and matrix spike QC samples. These single-use spiking standards are verified, conveniently packaged in 2-20 mL glass vials, and very economical.

# The direct benefits:

- **Easy-to-use** ERA LCS/MS spiking standards are ready-to-use no dilutions are required.
- Reliable and consistent eliminate the possibility of errors from the contamination or repeated multiple dilutions of your primary stock standards.
- Independently verified ERA LCS/MS standards are analytically verified and traced to NIST SRMs where available.
- Save money You no longer need to pay for microcuries of activity when you only need picocuries.
   You also eliminate the cost of activity loss for short-lived isotopes.
- Reduce analytical cost You no longer need to spend valuable instrument time re-verifying standard stability.
   Order what you expect to use on a quarterly or annual basis we'll do the verification.

# The process is easy:

- 1. Select from any of the following carrier-free, single radionuclide standards.
- 2. Choose an activity up to the maximum listed in the table below.
- 3. Choose a convenient volume: 2 to 20 mL glass vials available.
- 4. For labs that analyze samples with more elevated activities, call for standard availability and pricing.
- 5. We will prepare the standards to your specifications and ship within 72 hours.

# Single Radionuclide Spiking Standards

| Cat. # | Radionuclide         | Maximum Activity/Vial |
|--------|----------------------|-----------------------|
| AM241  | Americium-241        | 40 pCi                |
| BA133  | Barium-133           | 400 pCi               |
| CS134  | Cesium-134           | 200 pCi               |
| CS137  | Cesium-137           | 400 pCi               |
| CO60   | Cobalt-60            | 200 pCi               |
| GAB    | Gross Alpha/Beta     | 30/40 pCi             |
| GA     | Gross Alpha (Th-230) | 30 pCi                |
| GB     | Gross Beta (Cs-137)  | 40 pCi                |
| PU238  | Plutonium-238        | 40 pCi                |
| PU239  | Plutonium-239        | 40 pCi                |
| RA226  | Radium-226           | 20 pCi                |
| RA228  | Radium-228           | Call                  |
| SR89   | Strontium-89         | 200 pCi               |
| SR90   | Strontium-90         | 40 pCi                |
| H3     | Tritium              | 2000 pCi              |
| UNAT   | Uranium, Natural     | 40 pCi                |
| ZN65   | Zinc-65              | 600 pCi               |



61

# MRAD SOLIDS

# Soil Radionuclides

| CRM       | PT *      | QR          |
|-----------|-----------|-------------|
| Cat. #608 | Cat. #802 | Cat. #608QR |

One  $500\ cc\ standard\ includes\ the\ alpha,\ beta\ and\ gamma\ emitting\ radionuclides\ listed\ below.$ 

| Actinium-228       | 500-5,000 pCi/kg    |
|--------------------|---------------------|
| Americium-241      | 50-2,000 pCi/kg     |
| Bismuth-212        | 500-5,000 pCi/kg    |
| Bismuth-214        | 500-5,000 pCi/kg    |
| Cesium-134         | 1,000-10,000 pCi/kg |
| Cesium-137         | 1,000-10,000 pCi/kg |
| Cobalt-60          | 1,000-10,000 pCi/kg |
| Lead-212           | 500-5,000 pCi/kg    |
| Lead-214           | 500-5,000 pCi/kg    |
| Manganese-54       | 1,000-10,000 pCi/kg |
| Plutonium-238      | 50-2,000 pCi/kg     |
| Plutonium-239      | 50-2,000 pCi/kg     |
| Potassium-40       | 5,000-50,000 pCi/kg |
| Strontium-90       | 500-10,000 pCi/kg   |
| Thorium-234        | 500-5,000 pCi/kg    |
| Uranium-234        | 500-5,000 pCi/kg    |
| Uranium-238        | 500-5,000 pCi/kg    |
| Uranium (Nat)      | 1,000-10,000 pCi/kg |
| Uranium (Nat) mass | 1,500-15,000 μg/kg  |
| Zinc-65            | 1,000-10,000 pCi/kg |
|                    |                     |

# Vegetation Radionuclides

| CRM       | PT *      | QR          |
|-----------|-----------|-------------|
| Cat. #609 | Cat. #803 | Cat. #609QR |

One  $500\ cc\ standard\ includes\ the\ alpha,\ beta\ and\ gamma\ emitting\ radionuclides\ listed\ below.$ 

| Americium-241      | 50-5,000 pCi/kg     |
|--------------------|---------------------|
| Cesium-134         | 300-3,000 pCi/kg    |
| Cesium-137         | 300-3,000 pCi/kg    |
| Cobalt-60          | 300-3,000 pCi/kg    |
| Curium-244         | 50-5,000 pCi/kg     |
| Manganese-54       | 300-3,000 pCi/kg    |
| Plutonium-238      | 50-5,000 pCi/kg     |
| Plutonium-239      | 50-5,000 pCi/kg     |
| Potassium-40       | 5,000-50,000 pCi/kg |
| Strontium-90       |                     |
| Uranium-234        | 50-5,000 pCi/kg     |
| Uranium-238        |                     |
| Uranium (Nat)      | 100-10,000 pCi/kg   |
| Uranium (Nat) mass |                     |
| Zinc-65            | 300-3,000 pCi/kg    |
|                    |                     |

# MRAD AIR FILTER

# Air Filter Radionuclides

| CRM       | PT *      | OR           |
|-----------|-----------|--------------|
| Cat. #606 | Cat. #800 | Cat. #6060R  |
| Cat. π000 | Cal. #000 | Cat. #000QIT |

One  $47~\mathrm{mm}$  diameter glass fiber filter contains the alpha, beta and gamma emitting radionuclides listed below.

| Americium-241      | · ·                 |
|--------------------|---------------------|
| Cesium-134         | 50-1,500 pCi/filter |
| Cesium-137         | 50-1,500 pCi/filter |
| Cobalt-60          |                     |
| Iron-55            | 50-1,500 pCi/filter |
| Manganese-54       | 50-1,500 pCi/filter |
| Plutonium-238      | 2-80 pCi/filter     |
| Plutonium-239      | 2-80 pCi/filter     |
| Strontium-90       | 5-200 pCi/filter    |
| Uranium-234        | 2-80 pCi/filter     |
| Uranium-238        |                     |
| Uranium (Nat)      | 4-160 pCi/filter    |
| Uranium (Nat) mass | 6-240 μg/filter     |
| Zinc-65            | 50-1,500 pCi/filter |

# Air Filter Gross Alpha/Beta

| CRM       | PT *      | OR          |
|-----------|-----------|-------------|
| Cat. #607 | Cat. #801 | Cat. #607QR |

One acrylic treated  $47\ mm$  diameter glass fiber filter contains the radionuclides listed below.

| Gross Alpha as Thorium-230 | . 5-100 pCi/filter |
|----------------------------|--------------------|
| Gross Rota as Cosium_137   | 5-100 nCi/filter   |



# MRAD WATER

# Water Radionuclides

| CRM       | PT *      | QR          |
|-----------|-----------|-------------|
| Cat. #617 | Cat. #804 | Cat. #617QR |

One 12 mL screw-top vial yields up to 2 liters after dilution. Includes the alpha, beta and gamma emitting radionuclides listed below.

| 3                  |                 |
|--------------------|-----------------|
| Americium-241      | 10-200 pCi/L    |
| Cesium-134         | 100-3,000 pCi/L |
| Cesium-137         |                 |
| Cobalt-60          | 100-3,000 pCi/L |
| Iron-55            | 100-3,000 pCi/L |
| Manganese-54       | 100-3,000 pCi/L |
| Plutonium-238      |                 |
| Plutonium-239      | 10-200 pCi/L    |
| Strontium-90       |                 |
| Uranium-234        | 10-200 pCi/L    |
| Uranium-238        |                 |
| Uranium (Nat)      |                 |
| Uranium (Nat) mass | 30-600 μg/L     |
| Zinc-65            |                 |
|                    |                 |

# Water Gross Alpha/Beta

| CRM       | PT *      | QR          |
|-----------|-----------|-------------|
| Cat. #615 | Cat. #805 | Cat. #615QR |

One 12 mL screw-top vial yields up to 2 liters after dilution. Includes the radionuclides below.

| Gross Alpha as Thorium-230 | 10-200 pCi/L |
|----------------------------|--------------|
| Gross Beta as Cesium-137   | 10-200 pCi/L |

# **Water Tritium**

| <b>CRM</b><br>Cat. #616 | PT * Cat. #806 | <b>QR</b><br>Cat. #616QR |
|-------------------------|----------------|--------------------------|

One 125 mL whole volume bottle ready to analyze as received.

.3,000-30,000 pCi/L





# LOW-LEVEL CRMs

# New in 2015!

Synthetic drinking and wastewater matrices with low concentrations of analytes for testing water supply, drinking water, ground water, water pollution, or wastewater.

Save time diluting your standards or spending numerous hours producing them yourself with our new low-level CRMs.

Our new line of low-level CRMs are optimal for:

- Method development and validation
- System checks
- Evaluating limits of quantitation
- Minimum detection limit studies
- Detection verification
- Many other uses

| Description                        | CRM  | Page |
|------------------------------------|------|------|
| Chlorine                           | 1358 | 65   |
| Color                              | 1353 | 65   |
| Common Inorganics                  | 1249 | 65   |
| Common Inorganics in Hard Water    | 1346 | 65   |
| Common Inorganics in Soft Water    | 1347 | 65   |
| Complex Nutrients in Hard Water    | 1241 | 65   |
| Complex Nutrients in Soft Water    | 1351 | 67   |
| Cyanide                            | 1345 | 65   |
| Demand                             | 1354 | 65   |
| Demand                             | 1242 | 65   |
| Herbicides                         | 1376 | 68   |
| Hexavalent Chromium                | 1248 | 66   |
| High Solids                        | 1355 | 66   |
| Inorganic Disinfection By-products | 1343 | 66   |
| Mercury                            | 1341 | 66   |
| Metals                             | 1340 | 66   |
| Metals                             | 1244 | 67   |
| Organochlorine Pesticides          | 1253 | 68   |
| Organochlorine Pesticides          | 1374 | 68   |
| Organophosphorus Pesticides        | 1256 | 68   |

| CRM  | Page                                                                                                 |
|------|------------------------------------------------------------------------------------------------------|
| 1254 | 68                                                                                                   |
| 1373 | 68                                                                                                   |
| 1255 | 68                                                                                                   |
| 1372 | 68                                                                                                   |
| 1240 | 66                                                                                                   |
| 1348 | 67                                                                                                   |
| 1349 | 67                                                                                                   |
| 1243 | 66                                                                                                   |
| 1250 | 66                                                                                                   |
| 1375 | 69                                                                                                   |
| 1257 | 69                                                                                                   |
| 1371 | 69                                                                                                   |
| 1370 | 70                                                                                                   |
| 1251 | 70                                                                                                   |
|      | 1254<br>1373<br>1255<br>1372<br>1240<br>1348<br>1349<br>1243<br>1250<br>1375<br>1257<br>1371<br>1370 |

**CRM** – Certified Reference Material

# INORGANICS

# Chlorine

# **CRM**

Cat. #1358

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample.

| Total chlorine | 75-500 µg/l |
|----------------|-------------|
| Free chlorine  | 75-500 µg/l |

# Color

# **CRM**

Cat. #1353

One 125 mL whole-volume bottle sample is ready to be analyzed.

Color......5-25 pc units

# Common Inorganics

# CRM

Cat. #1249

One liter poly bottle whole-volume sample is ready to be analyzed.

| Alkalinity             | 20-120 mg/L |
|------------------------|-------------|
| Calcium                | 2-50 mg/L   |
| Chloride               | 25-500 mg/L |
| Conductivity           |             |
| Fluoride               | 0.25-5 mg/L |
| Magnesium              | 1-25 mg/L   |
| pH                     | 5-10 units  |
| Potassium              | 2-50 mg/L   |
| Sodium                 | 5-100 mg/L  |
| Sulfate                | 2-50 mg/L   |
| Total dissolved solids |             |
| Total hardness         | 9-250 mg/L  |

# Common Inorganics in Hard Water

# CRM

Cat. #1346

One liter poly bottle whole-volume sample is ready to be analyzed.

| Alkalinity             | 25-200 mg/l       |
|------------------------|-------------------|
|                        |                   |
| Calcium                | 10-100 mg/L       |
| Chloride               | 20-250 mg/L       |
| Conductivity           | 130-1400 µmhos/cm |
| Fluoride               | 0.2-2 mg/L        |
| Magnesium              | 2-10 mg/L         |
| pH                     | 5-10 units        |
| Potassium              | 2-25 mg/L         |
| Sodium                 | 20-250 mg/L       |
| Sulfate                | 20-250 mg/L       |
| Total dissolved solids | 100-1,000 mg/L    |
| Total hardness         | 30-300 mg/L       |

# Common Inorganics in Soft Water

# **CRM**

Cat. #1347

A 1 liter poly bottle whole-volume sample is ready to be analyzed.

| Alkalinity             | 25-200 mg/L     |
|------------------------|-----------------|
| Calcium                | 2-20 mg/L       |
| Chloride               |                 |
| Conductivity           | 25-300 µmhos/cm |
| Fluoride               | 0.2-2 mg/L      |
| Magnesium              | 0.5-5 mg/L      |
| pH                     | 5-10 units      |
| Potassium              | 1-10 mg/L       |
| Sodium                 | 5-50 mg/L       |
| Sulfate                | 5-50 mg/L       |
| Total dissolved solids | 3               |
| Total hardness         | 5-75 mg/L       |

# Cyanide

# CRM

Cat. #1345

One 15 mL screw-cap vial yields up to 2 liters of sample.

| Free cyanide5 | 5-100 μg/L |
|---------------|------------|
| Total cyanide | 5-100 μg/L |

# **Demand**

# CRM

Cat. #1354

One 15 mL screw-cap vial yields up to 2 liters of sample.

| 5-day BOD | -25 mg/L |
|-----------|----------|
| COD       | -25 mg/L |
| DOC       | -10 mg/L |
| TOC       | -10 mg/L |

# **Demand**

# CRM

Cat. #1242

One 15 mL screw-cap vial spiking concentrate makes up to 2 liters of sample.

| 5-day BOD | 5-75 mg/L   |
|-----------|-------------|
| COD       | 10-150 mg/L |
| DOC       | 2-40 mg/L   |
| TOC       | 2-40 mg/L   |



# INORGANICS

# High Solids

### **CRM**

Cat. #1355

# **Inorganic Disinfection By-products**

### CRM

Cat. #1343

Two 24 mL screw-cap vials yield up to 2 liters of sample each.

| Bromate  | 1-12 μg/L  |
|----------|------------|
| Bromide  | 5-100 μg/L |
| Chlorate | 5-100 μg/L |
| Chlorite | 5-100 μg/L |

# **Solids Concentrate**

# CRM

Cat. #1243

One 24 mL screw-cap vial concentrate makes 1 liter of sample.

| Total dissolved solids       | 10-250 mg/L |
|------------------------------|-------------|
| Total suspended solids (TSS) | 5-50 mg/L   |

# Total Phenolics (4-AAP)

# CRM

Cat. #1250

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample.

# **METALS**

# Hexavalent Chromium

### **CRM**

Cat. #1248

One  $15\ \text{mL}$  screw-cap vial spiking concentrate and one  $24\ \text{mL}$  screw-cap vial matrix concentrate makes up to  $2\ \text{liters}$  of sample.

# Mercury

# CRM

Cat. #1341

One  $15\ \text{mL}$  screw-cap vial spiking concentrate and one  $24\ \text{mL}$  screw-cap vial matrix concentrate makes up to  $2\ \text{liters}$  of sample.

# Metals

### CRM

Cat. #1340

Two  $15\ \text{mL}$  screw-cap vial spiking concentrates and one  $24\ \text{mL}$  screw-cap vial matrix concentrate makes up to  $2\ \text{liters}$  of sample.

| Aluminum   | 25-500 μg/L    |
|------------|----------------|
| Antimony   | 1-20 μg/L      |
| Arsenic    | 1-25μg/L       |
| Barium     |                |
| Beryllium  | 1-20 μg/L      |
| Boron      | 100-2,000 μg/L |
| Cadmium    |                |
| Chromium   | 5-100 μg/L     |
| Cobalt     |                |
| Copper     | 200-5,000 μg/L |
| Iron       | 25-500 μg/L    |
| Lead       |                |
| Lithium    | 50-1,000 μg/L  |
| Manganese  | 5-100 μg/L     |
| Molybdenum | 5-100 μg/L     |
| Nickel     |                |
| Selenium   | 1-12 μg/L      |
| Silver     | 10-200 μg/L    |
| Strontium  | 50-1,000 μg/L  |
| Thallium   |                |
| Tin        | 100-2,000 μg/L |
| Vanadium   | 2-50 μg/L      |
| Zinc       | 100-2,000 μg/L |





# **METALS**

# Metals

### **CRM**

Cat. #1244

One 15 mL screw-cap vial spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample.

| Aluminum         | 200-4,000 μg/L |
|------------------|----------------|
| AluminumAntimony | 95-900 μg/L    |
| Arsenic          | 70-900 μg/L    |
| Barium           | 100-2,500 μg/L |
| Berullium        | 8-900 ua/L     |
| Boron            | 800-2,000 μg/L |
| Cadmium          | 8-750 μg/L     |
| Chromium, total  | 17-1,000 μg/L  |
| Cobalt           | 28-1,000 μg/L  |
| Copper           | 40-900 μg/L    |
| Iron             | 200-4,000 μg/L |
| Lead             | 70-3,000 μg/L  |
| Manganese        | 70-4,000 μg/L  |
| Molybdenum       | 60-600 μg/L    |
| Nickel           | 80-3,000 μg/L  |
| Selenium         | 90-2,000 μg/L  |
| Silver           | 26-600 μg/L    |
| Strontium        | 30-300 μg/L    |
| Thallium         | 60-900 μg/L    |
| Vanadium         | 55-2,000 μg/L  |
| Zinc             |                |
|                  |                |

# NUTRIENTS

# Complex Nutrients in Hard Water

# **CRM**

Cat. #1241

One 15 mL screw-cap vial spiking concentrate makes up to 2 liters of sample.

| Total kjeldahl nitrogen | 1-15 mg/L  |
|-------------------------|------------|
| Total nitrogen          | 1-20 mg/L  |
| Total phosphorus        | 0.5-5 mg/L |

# Complex Nutrients in Soft Water

# **CRM**

Cat. #1351

One 15 mL screw-cap vial spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample.

| Total kjeldahl nitrogen | 0.5-5 mg/L |
|-------------------------|------------|
| Total phosphorus.       | 0.5-5 mg/L |

# Simple Nutrients

# **CRM**

Cat. #1240

Two 15 mL screw-cap vials makes up to 2 liters of sample.

| Ammonia (N)                     | 1-20 mg/L   |
|---------------------------------|-------------|
| Nitrate (NO <sub>3</sub> )      | 0.5-10 mg/L |
| Nitrite (NO <sub>2</sub> )      | 0.5-5 mg/L  |
| Total oxidised nitrogen         | 1-15 mg/L   |
| Soluble reactive phosphorus (P) | 0.5-5 mg/L  |

# Simple Nutrients in Hard Water

# **CRM**

Cat. #1348

Two 15 mL screw-cap vial spiking concentrates and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample.

| Ammonium (NH <sub>4</sub> )     | 0.1-1 mg/L |
|---------------------------------|------------|
| Nitrate (NO <sub>3</sub> )      | 3-60 mg/L  |
| Nitrite (NO <sub>2</sub> )      | 0.1-1 mg/L |
| Soluble reactive phosphorus (P) | 0.5-5 mg/L |
| Total oxidised nitrogen (TON)   | 3-60 mg/l  |

# Simple Nutrients in Soft Water

# **CRM**

Cat. #1349

Two 15 mL screw-cap vial spiking concentrates and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample.

| Ammonium (NH <sub>4</sub> )     | 0.1-1 mg/L |
|---------------------------------|------------|
| Nitrate (NO <sub>3</sub> )      | 3-60 mg/L  |
| Nitrite (NO <sub>2</sub> )      | 0.1-1 mg/L |
| Soluble reactive phosphorus (P) | 0.5-5 mg/L |
| Total oxidised nitrogen (TON)   | 3-60 mg/L  |



# ORGANICS

# Herbicides

### **CRM**

Cat. #1376

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at 10-150 ng/L.

2,4-DB loxynil
Bromoxynil Monuron
Dicamba Propyzamide
Dichlorprop Trichlopyr

# Organochlorine Pesticides

# CRM

Cat. #1374

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at 10-150 ng/L (aldrin, dieldrin, heptachlor, and heptachlor epoxide at 2-40 ng/L).

 2,4-DDT
 Endosulfan I

 4,4'-DDD
 Endosulfan II

 4,4'-DDE
 Endrin

 4,4'-DDT
 Gamma BHC (Lindane)

 Aldrin
 Heptachlor

 Alpha BHC
 Heptachlor epoxide

 Beta BHC
 Hexachlorobenzene

 Delta BHC
 Pentachlorobenzene

 Dieldrin
 Trifluralin

# Organochlorine Pesticides

# CRM

Cat. #1253

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at  $100-2,000 \, \text{ng/L}$ .

Aldrin 4,4'-DDD Endrin
alpha-BHC 4,4'-DDE Endrin aldehyde
beta-BHC 4,4'-DDT Endrin ketone
delta-BHC Dieldrin Heptachlor
gamma-BHC (Lindane) Endosulfan I Heptachlor epoxide (beta)

alpha-Chlordane Endosulfan II Methoxychlor
gamma-Chlordane Endosulfan sulfate Pentachlorobenzene

# Organophosphorus Pesticides

# CRM

Cat. #1256

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at 100-1,500 ng/L.

Mevinphos

Parathion-ethyl

Parathion-methyl

Azinphos-ethyl Diazinon
Azinphos-methyl Dichlorvos
Chlorfenvinphos Fenitrothion
Chlorpyrifos Fenthion
Cupermethrin Malathion

# **PAHs**

### **CRM**

Cat. #1254

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at 10-250 ng/L.

 Acenaphthene
 Benzo(g,h,i)perylene
 Indeno(1,2,3-cd)pyrene

 Acenaphthylene
 Benzo(a)pyrene
 Naphthalene

 Anthracene
 Chrysene
 Phenanthrene

 Benzo(a)anthracene
 Dibenz(a,h)anthracene
 Pyrene

 Benzo(b)fluoranthene
 Fluoranthene

Fluorene

# PCB Congeners

Benzo(k)fluoranthene

# CRM

Cat. #1373

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at  $5-100 \, \text{ng/L}$ .

PCB 28 PCB 138
PCB 52 PCB 153
PCB 101 PCB 180
PCB 118

# **PCB Congeners**

# CRM

Cat. #1255

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at  $100-1,500 \, \text{ng/L}$ .

PCB 28 PCB 118 PCB 180
PCB 52 PCB 138
PCB 101 PCB 153

# **Semivolatiles**

Di-n-butyl phthalate

### CRM

Cat. #1372

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at 2-50 ng/L (benzo(a)pyrene at 1-12 ng/L).

Acenaphthene Diethyl phthalate
Acenaphthylene Dimethyl phthalate
Anthracene Di-n-octyl phthalate
Benzo(a)anthracene bis(2-Ethylhexyl)adipate
Benzo(b)fluoranthene bis(2-Ethylhexyl)phthalate
Benzo(b)fluoranthene Fluoranthene

Benzo(k)fluoranthene Fluoranthene
Benzo(g,h,i)perylene Fluorene
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene
Butylbenzylphthalate Naphthalene
Chrysene Phenanthrene
Dibenz(a,h)anthracene Pyrene



# ORGANICS

# Triazines, Urons and Acid Herbicides

# **CRM**

Cat. #1375

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at 10-150 ng/L.

2,4-D Isoproturon AMPA Linuron Atrazine MCPA Bentazone MCPB Chlortoluron Mecoprop Diuron Propazine Glyphosate Simazine

# **Trihalomethanes**

# **CRM**

Cat. #1371

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at  $10-100 \mu g/L$ .

Bromodichloromethane Chlorodibromomethane Bromoform Chloroform

# Triazines, Urons and Acid Herbicides

# **CRM**

Cat. #1257

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at 100-1,200 ng/L.

2,4-D Diuron MCPB AMPA Glyphosate Mecoprop Atrazine Isoproturon Propazine Bentazone Linuron Simazine Chlortoluron MCPA



# ORGANICS

# **Volatiles**

# **CRM**

Cat. #1370

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at  $0.1\mbox{-}\dot{5}0~\mu g/L.$ 

Benzene Carbon tetrachloride Chlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene 1,2-Dichloropropane Ethylbenzene Methylene chloride Sturene

Tetrachloroethene Toluene

1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl chloride o-Xylene m-Xylene p-Xylene m+p-Xylene Xylenes, total

# **Volatiles**

# **CRM**

Cat. #1251

One 2 mL flame-sealed ampule spiking concentrate and one 24 mL screw-cap vial matrix concentrate makes up to 2 liters of sample to be analyzed for the compounds listed below at  $1-300 \mu g/L$ .

Acetone 1,2-Dibromoethane (EDB) Acetonitrile Dibromomethane Acrolein 1,2-Dichlorobenzene Acrylonitrile 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Bromodichloromethane Dichlorodifluoromethane Bromoform 1,1-Dichloroethane 1.2-Dichloroethane Bromomethane 2-Butanone (MEK) 1,1-Dichloroethene Carbon disulfide cis-1.2-Dichloroethene Carbon tetrachloride trans-1,2-Dichloroethene Chlorobenzene 1,2-Dichloropropane Chlorodibromomethane cis-1,3-Dichloropropene Chloroethane trans-1,3-Dichloropropene 2-Chloroethyl vinyl ether Ethylbenzene Chloroform Hexachlorobutadiene 2-Hexanone Chloromethane 1,2-Dibromo-3-chloropropane Methylene Chloride (DBCP)

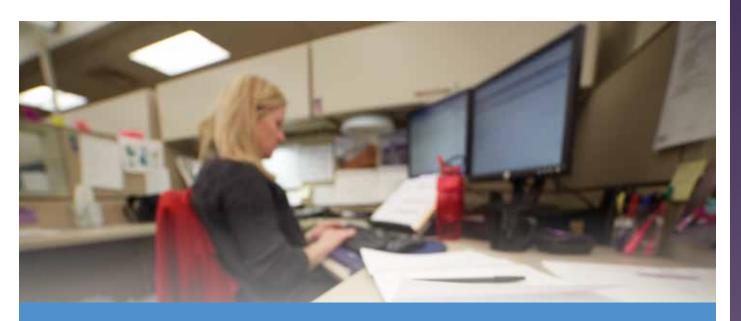
4-Methyl-2-pentanone (MIBK) Methyl tert-butyl ether (MTBE) Naphthalene

1,1,1,2-Tetrachloroethane 1.1.2.2-Tetrachloroethane Tetrachloroethene Toluene 1,2,4-Trichlorobenzene

Styrene

Trichloroethene Trichlorofluoromethane (Freon 11) 1,2,3-Trichloropropane Vinyl acetate Vinyl chloride Xylenes, total

1.1.1-Trichloroethane


1,1,2-Trichloroethane

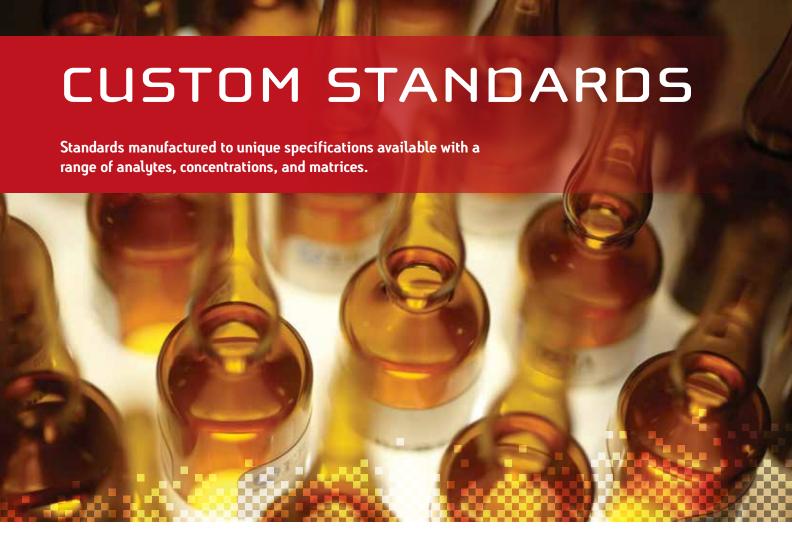
# HOW CAN ERA'S FASTER PT RESULTS MAKE YOUR JOB EASIER?

"It makes it a lot easier to correct problems faster, in order to get back on track of providing good data."

- Lab Manager, Nevada






# Maximize Efficiency, Minimize Errors

# Upload PT data directly from your LIMS

Simple to set up and easy-to-use, automatic data upload from your LIMS to ERA's eDATA System:

- Eliminates the possibility of transcription errors
- Saves you time by eliminating manual entry and review for transcription errors
- Allows you to spend more time reviewing the quality of the analytical data





# EXPERIENCE. SPEED. RELIABILITY.

Did you know that ERA chemists have prepared more than 20,000 unique custom standards?

ERA's custom projects cover a range of analytes, concentrations, and matrices. Whether it is one standard or one hundred, our chemists regularly prepare standards for a range of needs and situations including managed methodology studies, project or site-specific matrices, project or sample-specific limits, and ultra-trace to percent level concentrations.

Examples of custom standards prepared by ERA custom chemists:

- 10,000 mg/kg total organic carbon in soil
- Organic mercury in fish tissue
- Pesticides in freeze-dried spinach
- XRF metals in soil
- Speciated metal standards
- Organometallic standards

# **Certification of Custom Standards**

ERA offers three options for certification of custom standards:

- Gravimetric/volumetric
- Analytical
- ISO Guide 34 certified reference materials\*

\*Option is based on ERA's ISO Guide 34 scope of accreditation

# FROM SIMPLE TO COMPLEX AND EVERYTHING IN BETWEEN

ERA can supply you with a custom standard containing any analyte from the following programs:

- Clean Water Act (CWA)
- Safe Drinking Water Act (SDWA)
- Resource Conservation and Recovery Act (RCRA)
- Superfund Contract Laboratory Program (CLP)
- Standards Council of Canada (SCC)
- Canadian Association for Laboratory Accreditation (CALA)
- Ontario Ministry of the Environment (MOE)
   Safe Drinking Water Act (SDWA)

#### **CUSTOM STANDARDS**

### Performance Evaluation With Double-Blind Project

Gain a level of confidence with tangible evidence that your laboratory is meeting all quality objectives through a double-blind performance evaluation.

The key to evaluating the real performance of your laboratory is in finding the proper blend of realistic sample designs and accurate, stable analyte concentrations.

Here is how a performance evaluation program works:

- 1. Specify the matrices, analytes, and concentrations. If a stock standard is not available, we can design and prepare custom PE standards.
- 2. Send us your empty sample bottles, labels, chain-of-custody forms, and sample coolers.
- 3. We prepare, dilute (if necessary) and preserve the standards, fill your sample bottles, and return the samples to you via overnight delivery service. You'll receive ERA's certified values and performance acceptance limits (PALs) under separate sealed cover.
- 4. Integrate the standards into your sampling event or introduce them into your lab's routine sample load.
- 5. Your lab analyzes the blind PE standards along with routine samples.
- 6. Compare your lab's results to ERA's certified values and performance acceptance limits.

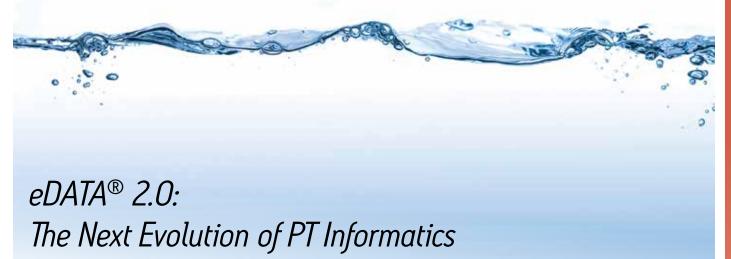
ERA can help you design a double-blind project that matches your project-specific needs. Speak with an ERA representative today to begin the process of understanding the real performance of your laboratory.



# **CUSTOM STANDARD QUOTATION REQUEST FORM**

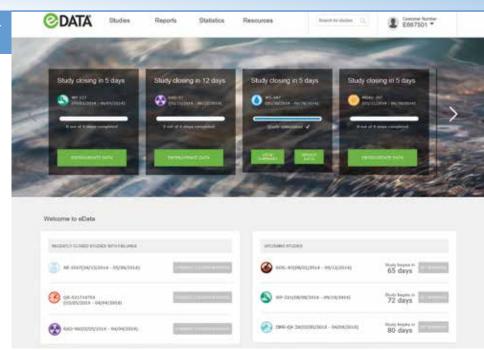


| Contact Name:                            |                                      |                                   | Date:                           |                    |
|------------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|--------------------|
| ERA Customer #:                          | Phone:                               |                                   | Fax:                            |                    |
| Company Name:                            |                                      | Email:                            |                                 |                    |
| Bill to:                                 |                                      | Ship to:                          |                                 |                    |
|                                          |                                      |                                   |                                 |                    |
| (shipping address is the same as billing | og addrord                           | Date Needed:                      |                                 |                    |
| Additional/Special Requirements (        |                                      | bate needed.                      |                                 |                    |
| - Tuarrionar Special Requirements        | packaging, sinpping, etc.).          |                                   |                                 |                    |
|                                          |                                      |                                   |                                 |                    |
|                                          | Analytes                             | CAS#                              | Concentrations                  | Units              |
| 1                                        |                                      |                                   |                                 |                    |
| 2                                        |                                      |                                   |                                 |                    |
| 3                                        |                                      |                                   |                                 |                    |
| 4                                        |                                      |                                   |                                 |                    |
| 5                                        |                                      |                                   |                                 |                    |
| 6                                        |                                      |                                   |                                 |                    |
| 7                                        |                                      |                                   |                                 |                    |
| 8                                        |                                      |                                   |                                 |                    |
| 9                                        |                                      |                                   |                                 |                    |
| 10                                       |                                      |                                   |                                 |                    |
| Sample Description (for label):          |                                      |                                   |                                 |                    |
| Matrix/Solvent:                          |                                      |                                   |                                 |                    |
| Preservative:                            |                                      |                                   |                                 |                    |
| Mass/Volume per Container:               |                                      |                                   | Number of Cont                  | tainers:           |
| Intended Use (calibration, QC, etc.      | ):                                   |                                   | Humber of Com                   |                    |
| Prep/Analytical Method:                  | <i>.</i>                             |                                   |                                 |                    |
| Select: Ready-to-Use                     | Concentrate Dilution Ins             | tructions:                        |                                 |                    |
| -                                        | etrically certified based on the man |                                   |                                 |                    |
| Analytical verification may be av        | ailable for your custom standard, de | pending upon the standard formula | ation. Contact ERA to discuss p | ricing and availab |


- An ERA representative will contact you within one business day to discuss your request.
- ERA provides blind standards to help you evaluate your laboratory's performance; call and speak with an ERA representative to learn more.

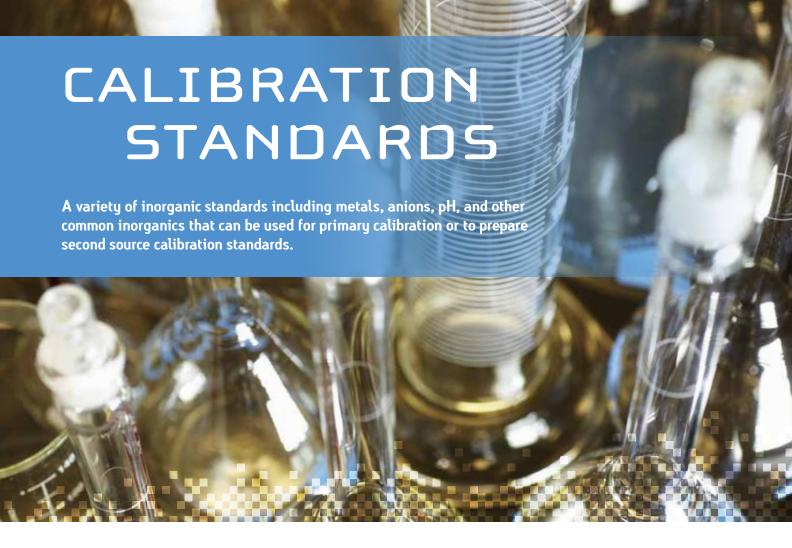
Email this form to info@eraqc.com or fax to 303-421-0159.

For immediate assistance with a Customs quote, call ERA at 800-372-0122 or 303-431-8454 and speak with an ERA Customer Service Representative.




# Effortless Insight




## **eDATA 2.0:** New in 2015

- Save time and money with ultra-fast, streamlined data entry.
- Easily identify problems to take corrective action with empowering performance evaluation tools.
- Showcase your quality with innovative performance reports for your laboratory or entire network.
- Effortlessly understand your entire network's performance with specialized tools for corporate managers.
- Eliminate transcription errors and increase productivity by uploading directly from your LIMS.



To learn more, visit www.eraqc.com/resources/edata





| Description                               | Page |
|-------------------------------------------|------|
| AA/ICP Metals                             | 79   |
| Anions                                    | 78   |
| Cations by Ion Chromatography – 100 mg/L  | 77   |
| Cations by Ion Chromatography – 1000 mg/L | 77   |
| ICP-MS Metals                             | 78   |

| Description            | Page |
|------------------------|------|
| Inorganics – 1000 mg/L | 77   |
| lons – 1000 mg/L       | 77   |
| Metals - 1000 mg/L     | 78   |
| pH Buffers             | 79   |

# 1000 Mg/L STANDARDS

Standards can be used for primary calibration or to prepare second source calibration check standards. They are traceable to NIST Standard Reference Materials, where available, and are guaranteed stable for one year. The certification documentation includes manufacturing uncertainties, traceability summaries and densities to aid in performing quantitative dilutions. The documentation for metal standards includes impurities.

## INORGANICS - 1000 MG/L

#### Chemical Oxygen Demand (COD)

**500 mL Bottle**Cat. #974 **125 mL Bottle**Cat. #042

One 1,000 mg/L standard preserved with H<sub>2</sub>SO<sub>4</sub> in an amber glass bottle.

#### Total Kjeldahl Nitrogen (TKN)

**500 mL Bottle**Cat. #996

Cat. #043

One 1,000 mg/L standard preserved with HCl in a poly bottle.

#### **MBAS/LAS Surfactants**

Cat. #975

One 15 mL screw-cap vial with LAS at 1,000 mg/L preserved with  $H_2SO_4$ .

#### Total Organic Carbon (TOC)

Cat. #978

One 500 mL amber glass bottles with TOC at 1,000 mg/L preserved with H<sub>2</sub>SO<sub>4</sub>.

#### Total Organic Halides (TOX)

Cat. #976

One 2 mL flame-sealed ampule with TOX at 1,000 mg/L in methanol.

#### **Phenol**

Cat. #982

One 500 mL amber glass bottle with Phenol at 1,000 mg/L preserved with  $H_2SO_4$ .

#### Sulfide

Cat. #999

One 10 mL flame-sealed ampule containing 1,000 mg/L sulfide preserved with NaOH and zinc acetate.

## IONS - 1000 MG/L

| Parameter                    | Matrix           | 500 mL Bottle | 125 mL Bottle |
|------------------------------|------------------|---------------|---------------|
| Acetate                      | H <sub>2</sub> 0 | _             | Cat. #78202   |
| Ammonia as NH <sub>3</sub>   | H <sub>2</sub> O | Cat. #986     | Cat. #044     |
| Ammonia as N                 | H <sub>2</sub> O | Cat. #985     | Cat. #045     |
| Bromate                      | H <sub>2</sub> O | _             | Cat. #065     |
| Bromide                      | H <sub>2</sub> O | Cat. #987     | Cat. #046     |
| Chlorate                     | H <sub>2</sub> O | _             | Cat. #066     |
| Chloride                     | H <sub>2</sub> O | Cat. #988     | Cat. #047     |
| Chlorite                     | H <sub>2</sub> O | _             | Cat. #067     |
| Complex Cyanide              | NaOH             | Cat. #998     | Cat. #049     |
| Cyanide (free)               | NaOH             | Cat. #997     | Cat. #048     |
| Fluoride                     | H <sub>2</sub> O | Cat. #989     | Cat. #050     |
| lodide                       | H <sub>2</sub> O | _             | Cat. #78212   |
| Nitrate as NO <sub>3</sub>   | H <sub>2</sub> O | Cat. #992     | Cat. #051     |
| Nitrate as N                 | H <sub>2</sub> O | Cat. #991     | Cat. #052     |
| Nitrite as N                 | H <sub>2</sub> O | Cat. #990     | Cat. #053     |
| Perchlorate                  | H <sub>2</sub> O | _             | Cat. #068     |
| Phosphate as PO <sub>4</sub> | H <sub>2</sub> O | Cat. #994     | Cat. #060     |
| Phosphate as P               | H <sub>2</sub> O | Cat. #993     | Cat. #061     |
| Sulfate                      | H <sub>2</sub> O | Cat. #995     | Cat. #062     |
|                              |                  |               |               |

## CATIONS BY ION CHROMATOGRAPHY — 100 MG/L

| Parameter                   | Matrix           | 125 mL Bottle |
|-----------------------------|------------------|---------------|
| Ammonium as NH <sub>4</sub> | H <sub>2</sub> 0 | Cat. #78102   |
| Ammonium as N               | H <sub>2</sub> 0 | Cat. #78104   |

# CATIONS BY ION CHROMATOGRAPHY — 1000 MG/L

| Parameter | Matrix           | 125 mL Bottle |
|-----------|------------------|---------------|
| Calcium   | H <sub>2</sub> O | Cat. #K10     |
| Magnesium | H <sub>2</sub> O | Cat. #K11     |

# METALS - 1000 Mg/L

| Parameter   | Matrix           |    | 125 mL Bottle |
|-------------|------------------|----|---------------|
| Aluminum*   | HNO <sub>3</sub> | DG | Cat. #011     |
| Arsenic*    | HNO <sub>3</sub> | DG | Cat. #013     |
| Beryllium*  | HNO <sub>3</sub> | DG | Cat. #015     |
| Bismuth*    | HNO <sub>3</sub> | DG | Cat. #K01     |
| Calcium*    | HNO <sub>3</sub> | DG | Cat. #018     |
| Chromium*   | HNO <sub>3</sub> | DG | Cat. #020     |
| Chromium VI | H <sub>2</sub> O | _  | Cat. #019     |
| Cobalt*     | HNO <sub>3</sub> | DG | Cat. #021     |
| Copper*     | HNO <sub>3</sub> | DG | Cat. #022     |
| Iron*       | HNO <sub>3</sub> | DG | Cat. #023     |
| Lead*       | HNO <sub>3</sub> | DG | Cat. #024     |
| Lithium*    | HNO <sub>3</sub> | DG | Cat. #KO4     |
| Magnesium*  | HNO <sub>3</sub> | DG | Cat. #025     |
| Manganese*  | HNO <sub>3</sub> | DG | Cat. #026     |
| Mercury*    | HNO <sub>3</sub> | DG | Cat. #027     |
| Molybdenum* | HNO <sub>3</sub> | DG | Cat. #028     |
| Nickel*     | HNO <sub>3</sub> | DG | Cat. #029     |
| Phosphorus* | HNO <sub>3</sub> | DG | Cat. #063     |
| Potassium*  | HNO <sub>3</sub> | DG | Cat. #030     |
| Selenium*   | HNO <sub>3</sub> | DG | Cat. #031     |
| Silica      | H <sub>2</sub> O | _  | Cat. #064     |
| Silicon*    | HNO <sub>3</sub> | DG | Cat. #032     |
| Silver*     | HNO <sub>3</sub> | DG | Cat. #033     |
| Sodium*     | HNO <sub>3</sub> | DG | Cat. #034     |
| Strontium*  | HNO <sub>3</sub> | DG | Cat. #035     |
| Thallium*   | HNO <sub>3</sub> | DG | Cat. #036     |
| Tin*        | HCl              | DG | Cat. #037     |
| Titanium*   | HCl              | DG | Cat. #038     |
| Vanadium*   | HNO <sub>3</sub> | DG | Cat. #039     |
| Yttrium*    | HNO <sub>3</sub> | DG | Cat. #K08     |
| Zinc*       | HNO <sub>3</sub> | DG | Cat. #040     |

<sup>\*</sup> Other metals, concentrations, and volumes are also available. Call ERA customer service for more information.

DG – Dangerous Good, requires special shipping.

## ICP-MS METALS

These standards come with a Certificate of Traceability and Uncertainty. Use for initial as well as continuing calibration and tuning verification. Provided as convenient concentrates with densities allowing you to easily perform gravimetric dilutions.

#### **ICP-MS Trace Metals**

#### CRM Cat. #TMS001\*

One 125 mL screw-cap poly bottle preserved with HNO<sub>3</sub> and tartaric acid.\*

| Aluminum10.0 mg/L  |
|--------------------|
| Antimony10.0 mg/L  |
| Arsenic 10.0 mg/L  |
| Barium10.0 mg/L    |
| Beryllium10.0 mg/L |
| Cadmium10.0 mg/L   |
| Chromium10.0 mg/L  |
| Cobalt 10.0 mg/L   |
| Copper10.0 mg/L    |
| Iron10.0 mg/L      |
| Lead10.0 mg/L      |

| Manganese  | 10.0 mg |
|------------|---------|
| Molybdenum | 10.0 mg |
| Nickel     | 10.0 mg |
| Selenium   | 10.0 mg |
| Silver     | 10.0 mg |
| Thallium   | 10.0 mg |
| Thorium    | 10.0 mg |
| Uranium    | 10.0 mg |
| Vanadium   | 10.0 mg |
| Zinc       | 10.0 mg |

<sup>\*</sup>Dangerous Good, requires special shipping.

#### **ICP-MS Major Cations**

#### CRM Cat. #TMS002\*

One 125 mL screw-cap poly bottle preserved with HNO<sub>3</sub>.\*

| Calcium   | 50.0 mg/L | Potassium | 50.0 mg/L |
|-----------|-----------|-----------|-----------|
| Magnesium | 50.0 mg/L | Sodium    | 50.0 mg/L |

<sup>\*</sup>Dangerous Good, requires special shipping.

#### **ANIONS**

#### Ion Chromatography

#### **CRM** Cat. #981

One 15 mL screw-cap vial yields up to 200 mL after dilution. Designed to calibrate or verify IC calibrations.

Call for anion standards at lower levels.

| Bromide  | 0.2-20 mg/L | Nitrate as I |
|----------|-------------|--------------|
| Chloride | 0.2-20 mg/L | Phosphate    |
| Fluoride | 0.1-10 mg/L | Sulfate      |

| Nitrate as N   | 0.2-20 | mg/L |
|----------------|--------|------|
| Phosphate as P | 0.5-30 | mg/L |
| Sulfate        | 0.5-30 | mg/L |



# AA/ICP METALS

All metals standards come with a Certificate of Traceability. The ICP Trace Metals standard also includes uncertainties. Use as initial as well as continuing calibration verification.

#### Flame AA Trace Metals

#### CRM

Cat. #508

One 24 mL screw-cap vial, preserved with HNO3, yields up to 500 mL after dilution. Designed for flame AA. Includes aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, silver, strontium, thallium, vanadium, and zinc. Provided with a certificate of NIST traceability.\*

#### Flame AA Cations

#### CRM

Cat. #530

One 15 mL screw-cap vial, unpreserved, yields up to 250 mL after dilution. Use with ICP, IC, and AA methods.

| Calcium   | 10-200 mg/L |
|-----------|-------------|
| Magnesium | 10-200 mg/L |
| Potassium | 5-100 mg/L  |
| Sodium    | 10-250 mg/L |

#### **ICP Trace Metals**

#### CRM

Cat. #524\*

| One 500 mL whole-volume standard, preserved with HN | O <sub>3</sub> and HCl, is ready-to-use* |
|-----------------------------------------------------|------------------------------------------|
| Aluminum                                            | 10.0 mg/L                                |
| Antimony                                            | 1.0 mg/L                                 |
| Arsenic                                             | 1.0 mg/L                                 |
| Barium                                              | 1.0 mg/L                                 |
| Beryllium                                           | 1.0 mg/L                                 |
| Bismuth                                             | 1.0 mg/L                                 |
| Boron                                               | 1.0 mg/L                                 |
| Cadmium                                             | 1.0 mg/L                                 |
| Calcium                                             | 10.0 mg/L                                |
| Chromium                                            | 1.0 mg/L                                 |
| Cobalt                                              | 1.0 mg/L                                 |
| Copper                                              | 1.0 mg/L                                 |
| Iron                                                | 10.0 mg/L                                |
| Lanthanum                                           | 1.0 mg/L                                 |
| Lead                                                | 10.0 mg/L                                |
| Magnesium                                           | 10.0 mg/L                                |
| Manganese                                           | 1.0 mg/L                                 |
| Molybdenum                                          | 1.0 mg/L                                 |
| Nickel                                              | 1.0 mg/L                                 |
| Phosphorus                                          | 1.0 mg/L                                 |
| Potassium                                           | 10.0 mg/L                                |
| Selenium                                            | 10.0 mg/L                                |
| Sodium                                              | 10.0 mg/L                                |
| Strontium                                           | 1.0 mg/L                                 |
| Tin                                                 | 1.0 mg/L                                 |
| Vanadium                                            | 1.0 mg/L                                 |
| 7inc                                                | 1 0 mg/l                                 |

<sup>\*</sup>Dangerous Good, requires special shipping.

## PH BUFFERS

ERA Cal pH Buffers are directly traceable to NIST SRMs, mercury free, guaranteed stable for at least one year after your receipt, and are supplied with a full certificate of analysis. Choose single bottles or convenient 6-bottle cases.

| Value         | Volume | Single Bottle | Case of 6 Bottles |
|---------------|--------|---------------|-------------------|
| pH 4.00       | 1 pint | Cat. #127     | Cat. #128         |
| pH 7.00       | 1 pint | Cat. #131     | Cat. #132         |
| pH 10.00      | 1 pint | Cat. #135     | Cat. #136         |
| Case of 2 ea. | Pints  |               | Cat. #141         |

79

# REAGENTS

Reagents for environmental and industrial analysis.



| Description   | Page |
|---------------|------|
| EDTA          | 81   |
| HCl           | 81   |
| lodine        | 81   |
| Miscellaneous | 83   |
| рН            | 82   |

| Description         | Page |
|---------------------|------|
| Potassium Hydroxide | 82   |
| Silver Nitrate      | 82   |
| Sodium Hydroxide    | 83   |
| Sodium Thiosulfate  | 83   |
| Sulfuric Acid       | 83   |

# REAGENTS

ERA manufactures industrial reagents with tolerances of +/- 0.5%, and will hold the certified value lot to lot within 0.5%. Our reagents are shipped with a certificate of analysis and are homogeneous at a 95% confidence interval.

| EDTA             |              |
|------------------|--------------|
| 0.01 M, 1 Gallon | Cat. #183160 |
| 0.02 M, 1 Gallon | Cat. #183212 |
| 0.1 M, 1 Liter   | Cat. #183118 |
| 0.1 M, 1 Gallon  | Cat. #183120 |
| 0.1 M, 5 Gallon  | Cat. #187525 |

| lodine                      |              |
|-----------------------------|--------------|
| 0.0473 N, 1 Gallon          | Cat. #183134 |
| 0.0473 N, 4 x 1 Gallon Case | Cat. #182001 |
| 0.1 N, 1 Liter              | Cat. #183136 |
| 0.1 N, 1 Gallon             | Cat. #183138 |

| HCl                    |    |              |
|------------------------|----|--------------|
| 0.01 N, 1 Liter        | DG | Cat. #183026 |
| 0.01 N, 1 Gallon       | DG | Cat. #183028 |
| 0.01 N, 5 Gallon       | DG | Cat. #187503 |
| 0.1 N, 1 Liter         | DG | Cat. #183030 |
| In IPA, 0.1 N, 1 Liter | DG | Cat. #184001 |
| 0.1 N, 2.5 Liter       | DG | Cat. #183010 |
| 0.1 N, 1 Gallon        | DG | Cat. #183032 |
| 0.1 N, 5 Gallon        | DG | Cat. #187506 |
| 0.25 N, 1 Liter        | DG | Cat. #183034 |
| 0.25 N, 1 Gallon       | DG | Cat. #183036 |
| 0.25 N, 5 Gallon       | DG | Cat. #187507 |
| 0.5 N, 1 Liter         | DG | Cat. #183038 |
| 0.5 N, 1 Gallon        | DG | Cat. #183040 |
| 0.5 N, 5 Gallon        | DG | Cat. #187508 |
| 0.645 N, 5 Gallon      | DG | Cat. #183016 |
| 1.0 N, 1 Liter         | DG | Cat. #183042 |
| 1.0 N, 1 Gallon        | DG | Cat. #183044 |
| 1.0 N, 5 Gallon        | DG | Cat. #187510 |

DG – Dangerous Good, requires special shipping.



| рН                                                |              |
|---------------------------------------------------|--------------|
| pH 2 Buffer, No Color (1 Pint)                    | Cat. #183004 |
| pH 2 Buffer, No Color (1 Liter)                   | Cat. #183184 |
| pH 2 Buffer, No Color (1 Gallon)                  | Cat. #187027 |
| pH 2 Buffer, No Color (5 Gallon)                  | Cat. #183186 |
| pH 4 Buffer, No Color (1 Pint)                    | Cat. #183005 |
| pH 4 Buffer, No Color (1 Liter)                   | Cat. #183180 |
| pH 4 Buffer, No Color (1 Gallon)                  | Cat. #183181 |
| pH 4 Buffer, No Color (5 Gallon)                  | Cat. #183182 |
| pH 6 Concentrated Buffer,<br>No Color (2.5 Liter) | Cat. #183012 |
| pH 7 Buffer, No Color (1 Pint)                    | Cat. #183006 |
| pH 7 Buffer, No Color (1 Liter)                   | Cat. #183187 |
| pH 7 Concentrated Buffer,<br>No Color (2.5 Liter) | Cat. #183013 |
| pH 7 Buffer, No Color (1 Gallon)                  | Cat. #183188 |
| pH 7 Buffer, No Color (5 Gallon)                  | Cat. #183189 |
| pH 10 Buffer, No Color (1 Pint)                   | Cat. #183007 |
| pH 10 Buffer, No Color (1 Liter)                  | Cat. #183190 |
| pH 10 Buffer, No Color<br>(1 Gallon)              | Cat. #183191 |
| pH 10 Buffer, No Color<br>(5 Gallon)              | Cat. #183192 |
| pH 4 Buffer, Red (1 Gallon)                       | Cat. #187026 |
| pH 4 Buffer, Red (5 Gallon)                       | Cat. #183217 |
| pH 7 Buffer, Yellow (1 Gallon)                    | Cat. #187028 |
| pH 7 Buffer, Yellow (5 Gallon)                    | Cat. #183218 |
| pH 10 Buffer, Blue (1 Gallon)                     | Cat. #187029 |
| pH 10 Buffer, Blue (5 Gallon)                     | Cat. #183219 |

| Potassium Hydroxide     |    |              |  |  |
|-------------------------|----|--------------|--|--|
| 0.01 N, 1 Liter         | DG | Cat. #183090 |  |  |
| 0.01 N, 1 Gallon        | DG | Cat. #183092 |  |  |
| 0.01 N, 5 Gallon        | DG | Cat. #187521 |  |  |
| 0.1 N, 1 Liter          | DG | Cat. #183094 |  |  |
| In IPA, 0.1 N, 1 Gallon | DG | Cat. #183211 |  |  |
| 0.1 N, 1 Gallon         | DG | Cat. #183096 |  |  |
| 0.1 N, 5 Gallon         | DG | Cat. #187522 |  |  |
| 0.25 N, 1 Liter         | DG | Cat. #183098 |  |  |
| 0.25 N, 1 Gallon        | DG | Cat. #183100 |  |  |
| 0.25 N, 5 Gallon        | DG | Cat. #187523 |  |  |
| 0.5 N, 1 Liter          | DG | Cat. #183102 |  |  |
| 0.5 N, 1 Gallon         | DG | Cat. #183104 |  |  |
| 0.5 N, 5 Gallon         | DG | Cat. #187524 |  |  |

DG – Dangerous Good, requires special shipping.

| Silver Nitrate   |    |              |
|------------------|----|--------------|
| 0.1 N, 1 Liter   | DG | Cat. #183110 |
| 0.1 N, 1 Gallon  | DG | Cat. #183112 |
| 0.25 N, 1 Liter  | DG | Cat. #183114 |
| 0.25 N, 1 Gallon | DG | Cat. #183116 |

DG – Dangerous Good, requires special shipping.





| Sodium Hydroxide |    |              |  |  |
|------------------|----|--------------|--|--|
| 0.01 N, 1 Liter  | DG | Cat. #183070 |  |  |
| 0.01 N, 1 Gallon | DG | Cat. #183072 |  |  |
| 0.01 N, 5 Gallon | DG | Cat. #187516 |  |  |
| 0.1 N, 1 Liter   | DG | Cat. #183074 |  |  |
| 0.1 N, 1 Gallon  | DG | Cat. #183076 |  |  |
| 0.1 N, 5 Gallon  | DG | Cat. #187517 |  |  |
| 0.25 N, 1 Liter  | DG | Cat. #183078 |  |  |
| 0.25 N, 1 Gallon | DG | Cat. #183080 |  |  |
| 0.25 N, 5 Gallon | DG | Cat. #187518 |  |  |
| 0.5 N, 1 Gallon  | DG | Cat. #183082 |  |  |
| 0.5 N, 5 Gallon  | DG | Cat. #187519 |  |  |
| 1.0 N, 1 Liter   | DG | Cat. #183086 |  |  |
| 1.0 N, 1 Gallon  | DG | Cat. #183088 |  |  |
| 1.0 N, 5 Gallon  | DG | Cat. #183156 |  |  |

DG – Dangerous Good, requires special shipping.

| Sodium Thiosulfate |              |
|--------------------|--------------|
| 0.0394 N, 1 Gallon | Cat. #182002 |
| 0.0394 N, 5 Gallon | Cat. #182003 |
| 0.1 N, 1 Liter     | Cat. #183126 |
| 0.1 N, 1 Gallon    | Cat. #183128 |
| 0.25 N, 1 Liter    | Cat. #183130 |
| 0.25 N, 1 Gallon   | Cat. #183132 |

| Sulfuric Acid    |    |              |
|------------------|----|--------------|
| 0.01 N, 1 Liter  | DG | Cat. #183048 |
| 0.01 N, 1 Gallon | DG | Cat. #183049 |
| 0.02 N, 1 Liter  | DG | Cat. #183050 |
| 0.02 N, 1 Gallon | DG | Cat. #183052 |
| 0.02 N, 5 Gallon | DG | Cat. #187511 |
| 0.05 N, 1 Liter  | DG | Cat. #183003 |
| 0.1 N, 1 Liter   | DG | Cat. #183054 |
| 0.1 N, 1 Gallon  | DG | Cat. #183056 |
| 0.1 N, 5 Gallon  | DG | Cat. #187512 |
| 0.2 N, 1 Liter   | DG | Cat. #183058 |
| 0.2 N, 1 Gallon  | DG | Cat. #183060 |
| 0.2 N, 5 Gallon  | DG | Cat. #187514 |
| 0.5 N, 1 Liter   | DG | Cat. #183062 |
| 0.5 N, 1 Gallon  | DG | Cat. #183064 |
| 1.0 N, 1 Liter   | DG | Cat. #183066 |
| 1.0 N, 1 Gallon  | DG | Cat. #183068 |
| 1.0 N, 5 Gallon  | DG | Cat. #187515 |

DG – Dangerous Good, requires special shipping.

| Miscellaneous                                 |    |              |
|-----------------------------------------------|----|--------------|
| KOH 5 M, KCN 1 M,<br>5 Gallon                 | -  | Cat. #183213 |
| Manganese Standard,<br>40 g/L, 1 Liter        | DG | Cat. #183008 |
| Manganese Standard,<br>55 g/L, 1 Liter        | DG | Cat. #183009 |
| TISAB, Fluoride Buffer,<br>1 Gallon           | -  | Cat. #183162 |
| Barium Perchlorate,<br>0.1 N, 1 Liter         | _  | Cat. #183017 |
| Potassium Dichromate,<br>0.1 N, 1 Liter       | DG | Cat. #183221 |
| Potassium Permanganate,<br>0.1 N, 2.5 liter   | DG | Cat. #183001 |
| Ferrous Ammonium Sulfate,<br>0.25 N, 1 Gallon | DG | Cat. #183011 |
| Phenolphthalein,<br>0.5%, 1 Pint              | DG | Cat. #183168 |
| Sodium Carbonate,<br>1.0 N, 1 Liter           | _  | Cat. #183172 |
| Sodium Carbonate,<br>25 g/L, 10 Liter         | _  | Cat. #183002 |

DG — Dangerous Good, requires special shipping.

| Α                   | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|---------------------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Acetate             |    | 77  |       |    |       |     |      |     |    |    |
| Acidity             |    |     |       |    |       |     |      |     | 16 |    |
| Acids               |    |     |       |    |       |     | 42   |     | 18 |    |
| Aldehydes & Ketones | 55 |     |       |    |       |     |      |     |    |    |
| Aluminum            |    | 78  |       |    |       |     |      |     |    |    |
| Americium-241       |    |     |       |    | 61    |     |      |     |    |    |
| Ammonia             | 57 | 77  |       |    |       |     |      |     |    |    |
| Ammonium            |    | 77  |       |    |       |     |      |     |    |    |
| Anions              |    | 78  |       |    |       |     | 39   |     |    |    |
| Aromatics           |    |     |       |    |       |     |      |     | 17 |    |
| Arsenic             |    | 78  |       |    |       |     |      |     |    |    |

| В                               |            | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|---------------------------------|------------|-----|-------|----|-------|-----|------|-----|----|----|
| Barium                          |            |     |       |    | 61    |     |      |     |    |    |
| Base/Neutrals                   |            |     |       |    |       |     | 42   |     | 18 |    |
| Beryllium                       |            | 78  |       |    |       |     |      |     |    |    |
| Biochemical Oxygen Demand (BOD) | See Demand |     |       |    |       |     |      |     |    |    |
| Bismuth                         |            | 78  |       |    |       |     |      |     |    |    |
| Boron                           |            |     |       |    |       |     |      |     | 16 |    |
| Boston Round Oil & Grease       |            |     |       |    |       |     |      |     | 13 |    |
| Bromate                         |            | 77  |       |    |       |     |      |     |    |    |
| Bromide                         |            | 77  |       |    |       |     |      |     | 16 |    |
| BTEX & MTBE                     |            |     |       |    |       |     | 40   | 48  | 17 |    |

| <b>C</b>                     |    | Cal           | LLCRM | MB | RChem | RGT | Soil   | UST | WP     | WS |
|------------------------------|----|---------------|-------|----|-------|-----|--------|-----|--------|----|
| Calcium                      |    | 77, 78        |       |    |       |     |        |     |        |    |
| Carbamate                    |    |               |       |    |       |     | 43     |     | 19     | 30 |
| Cations                      |    | 77, 78,<br>79 |       |    |       |     |        |     |        |    |
| Cesium                       |    |               |       |    | 61    |     |        |     |        |    |
| Chemical Oxygen Demand (COD) |    | 77*           |       |    |       |     |        |     |        |    |
| Chloral Hydrate              |    |               |       |    |       |     |        |     |        | 29 |
| Chlorate                     |    | 77            |       |    |       |     |        |     |        |    |
| Chlordane                    |    |               |       |    |       |     | 43     |     | 19     | 30 |
| Chloride                     |    | 77            |       |    |       |     |        |     |        |    |
| Chlorinated Acid             |    |               |       |    |       |     | 42     |     | 17     | 31 |
| Chlorine                     |    |               | 65    |    |       |     |        | 22  | 16     | 28 |
| Chlorite                     |    | 77            |       |    |       |     |        |     |        |    |
| Chromium                     | 56 | 78            |       |    |       |     |        |     |        |    |
| Cobalt                       |    | 78            |       |    |       |     |        |     |        |    |
| Cobalt-60                    |    |               |       |    | 61    |     |        |     |        |    |
| Color                        |    |               | 65    |    |       |     |        |     | 15     | 28 |
| Complex Cyanide              |    | 77            |       |    |       |     |        |     |        |    |
| Complex Nutrients            |    |               | 67    |    |       |     |        |     | 12, 20 |    |
| Copper                       |    | 78            |       |    |       |     |        |     |        |    |
| Corrosivity                  |    |               |       |    |       |     | 39     |     |        | 28 |
| Cyanide                      |    | 77            | 65    |    |       |     | 39, 45 |     | 15, 22 | 28 |

#### \*See Demand

| D                           | Cal | LLCRM | MB | RChem | RGT | Soil | UST    | WP     | WS |
|-----------------------------|-----|-------|----|-------|-----|------|--------|--------|----|
| Demand                      |     | 65    |    |       |     |      |        | 13, 20 |    |
| Diesel Range Organics (DRO) |     |       |    |       |     | 42   | 48, 50 | 18     |    |

| E                 | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|-------------------|----|-----|-------|----|-------|-----|------|-----|----|----|
| EDB/DBCP/TCP      |    |     |       |    |       |     |      |     | 18 | 30 |
| Massachusetts EPH |    |     |       |    |       |     |      | 51  |    |    |
| New Jersey EPH    |    |     |       |    |       |     |      | 51  |    |    |
| Enterococci       |    |     |       | 33 |       |     |      |     |    |    |

| F        | AE | Cal | LLCRM | МВ | RChem | RGT | Soil | UST | WP | WS |
|----------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Fluoride | 57 | 77  |       |    |       |     |      |     | 21 |    |

| G                             | AE | Cal | LLCRM | MB | RChem             | RGT | Soil | UST | WP | WS |
|-------------------------------|----|-----|-------|----|-------------------|-----|------|-----|----|----|
| Gamma Emitters                |    |     |       |    | 60                |     |      |     |    |    |
| Gasoline Additives            |    |     |       |    |                   |     |      |     |    | 29 |
| Gasoline Range Organics (GRO) |    |     |       |    |                   |     | 40   | 48  | 17 |    |
| Glycols                       |    |     |       |    |                   |     | 42   |     | 18 |    |
| Gross Alpha/Beta              |    |     |       |    | 60, 61,<br>62, 63 |     |      |     |    |    |

| Н                           | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP     | WS |
|-----------------------------|----|-----|-------|----|-------|-----|------|-----|--------|----|
| Haloacetic Acids (HAA)      |    |     |       |    |       |     |      |     |        | 29 |
| Halomethanes (THMs)         |    |     |       |    |       |     |      |     |        | 29 |
| Hardness                    |    |     |       |    |       |     |      |     | 12, 20 | 26 |
| HCl                         |    |     |       |    |       | 81  |      |     |        |    |
| HEM/SGT-HEM                 |    |     |       |    |       |     |      |     | 13     |    |
| Herbicides                  |    |     | 68    |    |       |     | 42   |     | 17     | 31 |
| Heterotrophic Plate Count   |    |     |       | 35 |       |     |      |     |        |    |
| Hexavalent Chromium         | 56 |     | 66    |    |       |     | 38   |     | 14, 21 | 26 |
| Hydrogen Halides & Halogens | 57 |     |       |    |       |     |      |     |        |    |

| I                                     |    | Cal    | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|---------------------------------------|----|--------|-------|----|-------|-----|------|-----|----|----|
| ICP-MS Trace Metals/<br>Major Cations |    | 78     |       |    |       |     |      |     |    |    |
| Ignitability/Flash Point              |    |        |       |    |       |     | 39   |     |    |    |
| Inorganic Disinfection                |    |        |       |    |       |     |      |     |    | 27 |
| Inorganic Disinfection<br>By-products |    |        | 66    |    |       |     |      |     |    |    |
| Inorganics                            | 57 | 77     | 65-66 |    |       |     | 39   |     |    | 26 |
| lodide                                |    | 77     |       |    |       |     |      |     |    |    |
| lodine                                |    |        |       |    |       | 81  |      |     |    |    |
| lodine-131                            |    |        |       |    | 60    |     |      |     |    |    |
| Ion Chromatography                    |    | 77, 78 |       |    |       |     |      |     |    |    |
| Iron                                  |    | 78     |       |    |       |     |      |     |    |    |

| L       | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|---------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Lead    | 56 | 78  |       |    |       |     |      |     |    |    |
| Lithium |    | 78  |       |    |       |     |      |     | 14 |    |

| М                                         | AE | Cal    | LLCRM | МВ | RChem | RGT | Soil   | UST | WP     | WS |
|-------------------------------------------|----|--------|-------|----|-------|-----|--------|-----|--------|----|
| Magnesium                                 |    | 77, 78 |       |    |       |     |        |     |        |    |
| Manganese                                 |    | 78     |       |    |       | 83  |        |     |        |    |
| Massachusetts Ground Water<br>Enterococci |    |        |       | 33 |       |     |        |     |        |    |
| Mercury                                   | 56 | 78     | 66    |    |       |     |        |     | 14     | 26 |
| Metals                                    | 56 | 78-79  | 66-67 |    |       |     | 38, 45 |     | 14, 20 | 26 |
| Minerals                                  |    |        |       |    |       |     |        |     | 20, 21 | 26 |
| Molybdenum                                |    | 78     |       |    |       |     |        |     |        |    |

| N                           | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP            | WS |
|-----------------------------|----|-----|-------|----|-------|-----|------|-----|---------------|----|
| Naturals                    |    |     |       |    | 60    |     |      |     |               |    |
| Nickel                      |    | 78  |       |    |       |     |      |     |               |    |
| Nitrate                     |    | 77  |       |    |       |     |      |     |               |    |
| Nitrite                     |    | 77  |       |    |       |     |      |     | 12            | 27 |
| Nitroaromatics & Nitramines |    |     |       |    |       |     | 42   |     | 18            |    |
| Nitrogen Oxide              | 57 |     |       |    |       |     |      |     |               |    |
| Nitrogen Pesticides         |    |     |       |    |       |     |      |     | 19            |    |
| Nutrients                   |    |     | 67    |    |       |     | 39   |     | 12, 20,<br>21 | 27 |



| 0                                                                                                                                                                                                                                                                                                                                                                        | AE    | Cal                              | LLCRM       | MB    | RChem       | RGT            | Soil       | UST       | WP                      | WS          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------|-------------|-------|-------------|----------------|------------|-----------|-------------------------|-------------|
| Oil & Grease                                                                                                                                                                                                                                                                                                                                                             |       |                                  |             |       |             |                | 39         |           | 13, 20,                 |             |
|                                                                                                                                                                                                                                                                                                                                                                          |       |                                  |             |       |             |                |            |           | 21                      |             |
| o-Phosphate Nutrients                                                                                                                                                                                                                                                                                                                                                    |       |                                  |             |       |             |                |            |           |                         | 27          |
| Organic Carbon                                                                                                                                                                                                                                                                                                                                                           |       |                                  |             |       |             |                |            |           |                         | 28          |
| Organochlorine Pesticides                                                                                                                                                                                                                                                                                                                                                | 55    |                                  | 68          |       |             |                | 43         |           | 19                      |             |
| Organophosphorus Pesticides<br>(OPP)                                                                                                                                                                                                                                                                                                                                     |       |                                  | 68          |       |             |                | 43         |           | 19                      |             |
| P                                                                                                                                                                                                                                                                                                                                                                        | AE    | Cal                              | LLCRM       | MB    | RChem       | RGT            | Soil       | UST       | WP                      | WS          |
| PAHs                                                                                                                                                                                                                                                                                                                                                                     | 55    |                                  | 68          |       |             |                | 42         |           | 18                      |             |
| Particulate Matter                                                                                                                                                                                                                                                                                                                                                       | 57    |                                  | 00          |       |             |                | 72         |           | 10                      |             |
| PCBs                                                                                                                                                                                                                                                                                                                                                                     | 55    |                                  | 68          |       |             |                | 42, 44     |           | 17                      | 31          |
| Perchlorate                                                                                                                                                                                                                                                                                                                                                              |       | 77                               |             |       |             | 83             | Ĺ          |           |                         | 28          |
| Pesticides                                                                                                                                                                                                                                                                                                                                                               | 55    |                                  | 68          |       |             |                | 41, 43     |           | 19                      | 30          |
| pH                                                                                                                                                                                                                                                                                                                                                                       |       | 79                               |             |       |             | 82             | 39         |           | 12, 20,<br>21           | 26          |
| Phenol                                                                                                                                                                                                                                                                                                                                                                   |       | 77                               |             |       |             |                |            |           | 15                      |             |
| Phosphate                                                                                                                                                                                                                                                                                                                                                                |       | 77                               |             |       |             |                |            |           |                         |             |
| Phosphorus                                                                                                                                                                                                                                                                                                                                                               |       | 78                               |             |       |             |                |            |           |                         |             |
| Plutonium                                                                                                                                                                                                                                                                                                                                                                |       |                                  |             |       | 61          |                |            |           |                         |             |
| Potable Water Coliform Microbe                                                                                                                                                                                                                                                                                                                                           |       |                                  |             | 35    |             | 00.01          |            |           |                         |             |
| Potassium                                                                                                                                                                                                                                                                                                                                                                |       | 78                               |             |       |             | 82-83          |            |           |                         |             |
| ^                                                                                                                                                                                                                                                                                                                                                                        | 45    | 6.1                              | LI CDM      | MD    | D.C.I       | DCT            | C 13       | LICT      | 1.15                    | 1.10        |
| Q                                                                                                                                                                                                                                                                                                                                                                        | AE    | Cal                              | LLCRM       | MB    | RChem       | RGT            | Soil       | UST       | WP                      | WS          |
| QC-Plus                                                                                                                                                                                                                                                                                                                                                                  |       |                                  |             |       |             |                |            |           | 21-22                   |             |
|                                                                                                                                                                                                                                                                                                                                                                          |       |                                  |             |       |             |                |            |           |                         |             |
| R                                                                                                                                                                                                                                                                                                                                                                        | AE    | Cal                              | LLCRM       | MB    | RChem       | RGT            | Soil       | UST       | WP                      | WS          |
|                                                                                                                                                                                                                                                                                                                                                                          |       |                                  |             |       |             |                |            |           |                         |             |
| Radium                                                                                                                                                                                                                                                                                                                                                                   |       |                                  |             |       | 61          |                |            |           |                         |             |
| Radionuclides                                                                                                                                                                                                                                                                                                                                                            |       |                                  |             |       | 61<br>62-63 |                |            |           |                         |             |
| Radionuclides<br>Ready-to-Use VOAs in Soil                                                                                                                                                                                                                                                                                                                               |       |                                  |             |       |             |                | 40         |           |                         |             |
| Radionuclides<br>Ready-to-Use VOAs in Soil<br>Regulated Volatiles                                                                                                                                                                                                                                                                                                        |       |                                  |             |       |             |                | 40         |           | 10.00                   | 29          |
| Radionuclides<br>Ready-to-Use VOAs in Soil<br>Regulated Volatiles<br>Residual Chlorine                                                                                                                                                                                                                                                                                   |       |                                  |             |       |             |                | 40         | 40        | 16, 22                  | 29<br>28    |
| Radionuclides<br>Ready-to-Use VOAs in Soil<br>Regulated Volatiles<br>Residual Chlorine<br>Residual Range                                                                                                                                                                                                                                                                 |       |                                  |             |       |             |                | 40         | 49        | 16, 22                  |             |
| Radionuclides<br>Ready-to-Use VOAs in Soil<br>Regulated Volatiles<br>Residual Chlorine                                                                                                                                                                                                                                                                                   |       |                                  |             |       |             |                | 40         | 49        | 16, 22                  |             |
| Radionuclides<br>Ready-to-Use VOAs in Soil<br>Regulated Volatiles<br>Residual Chlorine<br>Residual Range<br>Organic fuels (RRO)                                                                                                                                                                                                                                          | AE    | Cal                              | LLCRM       | MB    |             | RGT            | 40<br>Soil |           |                         |             |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)                                                                                                                                                                                                                                                         | AE    | Cal 78                           | LLCRM       | MB    | 62-63       | RGT            |            | 49<br>UST | 16, 22<br>WP            | 28          |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)                                                                                                                                                                                                                                                         |       | Cal 78                           |             | MB    | 62-63       | RGT            | Soil       |           | WP                      | 28<br>WS    |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)                                                                                                                                                                                                                                                         | AE 55 |                                  | LLCRM<br>68 | МВ    | 62-63       | RGT            |            |           |                         | 28          |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  Selenium Semivolatiles                                                                                                                                                                                                                                 |       |                                  |             | MB    | 62-63       | RGT            | Soil       |           | WP                      | 28<br>WS    |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus)                                                                                                                                                                     |       | 78                               |             | МВ    | 62-63       | RGT            | Soil       |           | WP 18 12                | 28<br>WS    |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  Selenium Semivolatiles Settleable Solids Sheepshead Minnow                                                                                                                                                                                             |       |                                  |             | МВ    | 62-63       | RGT            | Soil       |           | WP                      | 28<br>WS    |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Silica                                                                                                                                                              |       | 78                               |             | МВ    | 62-63       | RGT            | Soil       |           | WP 18 12                | 28<br>WS    |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Silica Silicon                                                                                                                                                      |       | 78<br>78<br>78                   |             | МВ    | 62-63       | RGT 82         | Soil       |           | WP 18 12                | 28<br>WS    |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  S Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Silica Silicon                                                                                                                                                    |       | 78<br>78<br>78                   |             | МВ    | 62-63       |                | Soil       |           | WP 18 12                | 28<br>WS    |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  S Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Siltica Silticon Silver Silver Nitrate                                                                                                                            |       | 78<br>78<br>78                   | 68          | МВ    | 62-63       |                | Soil       |           | WP 18 12 15             | 28<br>WS    |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Siltica Silticon Silver Silver Nitrate Simple Nutrients                                                                                                             |       | 78<br>78<br>78<br>78             | 68          | МВ    | 62-63       | 82             | Soil       |           | WP 18 12 15             | 28<br>WS    |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  S Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Silica Silicon Silver Silver Nitrate Simple Nutrients Sodium                                                                                                      |       | 78<br>78<br>78<br>78             | 68          | МВ    | 62-63       | 82             | Soil       |           | WP 18 12 15             | 28<br>WS    |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  S Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Silica Silicon Silver Silver Nitrate Simple Nutrients Sodium Sodium Hydroxide                                                                                     |       | 78<br>78<br>78<br>78             | 68          | МВ    | 62-63       | 82<br>83<br>83 | Soil       |           | WP 18 12 15             | 28<br>WS    |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  S Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Silica Silicon Silver Silver Nitrate Simple Nutrients Sodium Sodium Hydroxide Sodium Thiosulfate                                                                  |       | 78<br>78<br>78<br>78             | 68          | MB 35 | 62-63       | 82<br>83<br>83 | Soil       |           | WP 18 12 15 15 12,20    | 28 WS 31 28 |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  S Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Silica Silicon Silver Silver Nitrate Simple Nutrients Sodium Sodium Hydroxide Sodium Thiosulfate Solids/Solids Concentrate Source Water Microbe                   |       | 78<br>78<br>78<br>78             | 68          |       | 62-63       | 82<br>83<br>83 | Soil       |           | WP 18 12 15 15 12,20    | 28 WS 31 28 |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  S Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Silica Silicon Silver Silver Nitrate Simple Nutrients Sodium Sodium Hydroxide Sodium Thiosulfate Solids/Solids Concentrate                                        |       | 78<br>78<br>78<br>78             | 68          |       | 62-63       | 82<br>83<br>83 | Soil       |           | WP 18 12 15 15 12,20    | 28 WS 31 28 |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Silica Silicon Silver Silver Nitrate Simple Nutrients Sodium Sodium Hydroxide Sodium Thiosulfate Solids/Solids Concentrate Source Water Microbe Strontium           |       | 78<br>78<br>78<br>78<br>78       | 68          |       | 62-63       | 82<br>83<br>83 | Soil       |           | WP 18 12 15 15 12,20    | 28 WS 31 28 |
| Radionuclides Ready-to-Use VOAs in Soil Regulated Volatiles Residual Chlorine Residual Range Organic fuels (RRO)  Selenium Semivolatiles Settleable Solids Sheepshead Minnow (Cyprinodon variegatus) Siltica Silticon Silver Silver Nitrate Simple Nutrients Sodium Sodium Hydroxide Sodium Thiosulfate Solids/Solids Concentrate Source Water Microbe Strontium Sulfate |       | 78<br>78<br>78<br>78<br>78<br>78 | 68          |       | 62-63       | 82<br>83<br>83 | Soil       |           | WP 18 18 12 15 15 12,20 | 28 WS 31 28 |

57 57

Sulfur Dioxide
Sulfuric Acid
Surfactants-MBAS

| T                                     | AE | Cal   | LLCRM | MB | RChem         | RGT | Soil | UST | WP           | WS |
|---------------------------------------|----|-------|-------|----|---------------|-----|------|-----|--------------|----|
| TCLP                                  |    |       |       |    |               |     | 41   |     |              |    |
| Thallium                              |    | 78    |       |    |               |     |      |     |              |    |
| Tin                                   |    | 78    |       |    |               |     |      |     |              |    |
| Tin & Titanium                        |    |       |       |    |               |     |      |     | 14           |    |
| Titanium                              |    | 78    |       |    |               |     |      |     | 14           |    |
| Total Cyanide                         |    |       |       |    |               |     |      |     | 22           |    |
| Total Kjeldahl Nitrogen (TKN)         |    | 77    |       |    |               |     |      |     |              |    |
| Total Organic Carbon (TOC)            |    | 77*   |       |    |               |     |      |     |              |    |
| Total Organic Halides (TOX)           |    | 77    |       |    |               |     |      |     | 15           |    |
| Total Petroleum Hydrocarbons<br>(TPH) |    |       |       |    |               |     | 41   | 48  | 13           |    |
| Total Phenolics                       |    |       | 66    |    |               |     |      |     | 15, 22       |    |
| Total Residual Chlorine               |    |       |       |    |               |     |      |     | 16, 22       |    |
| Toxaphene                             |    |       |       |    |               |     | 43   |     | 19           | 30 |
| Trace Metals                          |    | 78-79 |       |    |               |     |      |     | 14, 20<br>22 | 26 |
| Triazines, Urons, and Acid Herbicides | 82 | 87    |       |    |               |     |      |     |              |    |
| Trihalomethanes                       | 82 |       |       |    |               |     |      |     |              |    |
| Tritium                               |    |       |       |    | 60, 61,<br>63 |     |      |     |              |    |
| Turbidity                             |    |       |       |    |               |     |      |     | 15           | 28 |

\*See Demand

| U                     | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|-----------------------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Unregulated Volatiles |    |     |       |    |       |     |      |     |    | 29 |
| Uranium               |    |     |       |    | 61    |     |      |     | 14 | 26 |
| UV 248 Absorbance     |    |     |       |    |       |     |      |     |    | 28 |

| ٧         |    | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|-----------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Vanadium  |    | 78  |       |    |       |     |      |     |    | 26 |
| Volatiles | 54 |     | 70    |    |       |     | 40   |     | 17 | 29 |
| VPH       |    |     |       |    |       |     |      | 51  |    |    |

| W                      | AE | Cal | LLCRM | МВ | RChem | RGT | Soil | UST | WP | WS |
|------------------------|----|-----|-------|----|-------|-----|------|-----|----|----|
| Washington HEM/SGT-HEM |    |     |       |    |       |     |      | 50  |    |    |

| Y AE    | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|---------|-----|-------|----|-------|-----|------|-----|----|----|
| Yttrium | 78  |       |    |       |     |      |     |    |    |

| Z    | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|------|-----|-------|----|-------|-----|------|-----|----|----|
| Zinc | 78  |       |    | 61    |     |      |     |    |    |

AE Air & Emissions RGT Reagents

Cal Calibration Soil Soil

LLCRM Low-Level CRMs UST Underground Storage Tank

MB Microbiology WP Water Pollution

RChem Radiochemistry WS Water Supply

| Α                                                            | AE    | Cal   | LLCRM | МВ | RChem | RGT | Soil   | UST | WP            | WS |
|--------------------------------------------------------------|-------|-------|-------|----|-------|-----|--------|-----|---------------|----|
| Acenaphthene                                                 | 55    |       | 68    |    |       |     | 42     |     | 18            | 31 |
| Acenaphthylene                                               | 55    |       | 68    |    |       |     | 42     |     | 18            | 31 |
| Acetaldehyde                                                 | 55    |       |       |    |       |     |        |     |               | -  |
| Acetate                                                      |       | 77    |       |    |       |     |        |     |               |    |
| Acetone                                                      | 54-55 |       | 70    |    |       |     | 40     |     | 17            |    |
| Acetonitrile                                                 | 54    |       | 70    |    |       |     | 40     |     | 17            |    |
| Acidity as CaCO <sub>3</sub>                                 |       |       |       |    |       |     |        |     | 16            |    |
| Acifluorfen                                                  |       |       |       |    |       |     | 42     |     | 17            | 31 |
| Acrolein                                                     | 54    |       | 70    |    |       |     | 40     |     | 17            |    |
| Acrylonitrile                                                | 54    |       | 70    |    |       |     |        |     | 17            |    |
| Actinium                                                     |       |       |       |    | 62    |     |        |     |               |    |
| Alachlor                                                     |       |       |       |    |       |     |        |     | 19            | 30 |
| Aldicarb                                                     |       |       |       |    |       |     | 43     |     | 19            | 30 |
| Aldicarb sulfone                                             |       |       |       |    |       |     | 43     |     | 19            | 30 |
| Aldicarb sulfoxide                                           |       |       |       |    |       |     | 43     |     | 19            | 30 |
| Aldrin                                                       | 55    |       | 68    |    |       |     | 43     |     | 19            | 30 |
| Alkalinity                                                   |       |       | 65    |    |       |     |        |     | 12, 20,<br>21 | 26 |
| Aluminum                                                     |       | 78-79 | 66-67 |    |       |     | 38, 45 |     | 14, 20,<br>22 | 26 |
| Americium-241                                                |       |       |       |    | 62-63 |     |        |     |               |    |
| Ametryn                                                      |       |       |       |    |       |     |        |     | 19            |    |
| 2-Amino-1-methylbenzene<br>(o-Toluidine)                     |       |       |       |    |       |     | 42     |     | 18            |    |
| 4-Amino-2,6-dinitrotoluene                                   |       |       |       |    |       |     | 42     |     | 18            |    |
| 2-Amino-4,6-dinitrotoluene                                   |       |       |       |    |       |     | 42     |     | 18            |    |
| Ammonia as N                                                 |       | 77    | 67    |    |       |     | 39     |     | 12, 20        |    |
| Ammonia as NH <sub>3</sub>                                   |       | 77    |       |    |       |     |        |     |               |    |
| Ammonium                                                     | 57    |       |       |    |       |     |        |     |               |    |
| Ammonium as N                                                |       | 77    |       |    |       |     |        |     |               |    |
| Ammonium as NH <sub>4</sub><br>tert-Amyl methyl ether (TAME) |       | 77    | 67    |    |       |     |        |     |               | 29 |
| Anilazine                                                    |       |       |       |    |       |     |        |     | 19            |    |
| Aniline                                                      | 55    |       |       |    |       |     | 42     |     | 18            |    |
| Anthracene                                                   | 55    |       | 68    |    |       |     | 42     |     | 18            | 31 |
| Antimony                                                     | 56    | 78-79 | 66-67 |    |       |     | 38, 45 |     | 14, 20,       | 26 |
| Aroclor                                                      | 55    |       |       |    |       |     | 42, 44 |     | 17            | 31 |
| Arsenic                                                      | 56    | 78-79 | 66-67 |    |       |     | 38, 45 |     | 14, 20,       | 26 |
| Atraton                                                      |       |       |       |    |       |     | 44     |     | 19            |    |
| Atrazine                                                     |       |       | 69    |    |       |     |        |     | 19            | 30 |
| Azinphos                                                     |       |       | 68    |    |       |     | 43     |     | 19            |    |

| В                               | AE     | Cal    | LLCRM  | MB | RChem | RGT | Soil   | UST | WP            | WS     |
|---------------------------------|--------|--------|--------|----|-------|-----|--------|-----|---------------|--------|
| Barium                          | 56     | 78, 79 | 66, 67 |    | 60    |     | 38, 45 |     | 14, 20,<br>22 | 26     |
| Barium Perchlorate              |        |        |        |    |       | 83  |        |     |               |        |
| Baygon                          |        |        |        |    |       |     |        |     | 19            | 30     |
| Bentazone                       |        |        | 69     |    |       |     | 42     |     | 17            | 31     |
| Benzaldehyde                    | 55     |        |        |    |       |     |        |     |               |        |
| Benzene                         | 54     |        | 69     |    |       |     | 40     |     | 17            | 29     |
| Benzidine                       | 55     |        |        |    |       |     | 42     |     | 18            |        |
| Benzo(a)anthracene              | 55     |        | 68     |    |       |     | 42     |     | 18            | 31     |
| Benzo(a)pyrene                  | 55     |        | 68     |    |       |     | 42     |     | 18            | 31     |
| Benzo(b)fluoranthene            | 55     |        | 68     |    |       |     | 42     |     | 18            | 31     |
| Benzo(g,h,i)perylene            | 55     |        | 68     |    |       |     | 42     |     | 18            | 31     |
| Benzo(k)fluoranthene            | 55     |        | 68     |    |       |     | 42     |     | 18            | 31     |
| Benzoic acid                    | 55     |        |        |    |       |     | 42     |     | 18            | 31     |
| Benzyl alcohol                  | 55     |        |        |    |       |     | 42     |     | 18            |        |
| Beryllium                       | 56     | 78, 79 | 66, 67 |    |       |     | 38, 45 |     | 14, 20,<br>22 | 26     |
| alpha-BHC                       | 55     |        | 68     |    |       |     | 43     |     | 19            |        |
| beta-BHC                        | 55     |        | 68     |    |       |     | 43     |     | 19            |        |
| delta-BHC                       | 55     |        | 68     |    |       |     | 43     |     | 19            |        |
| gamma-BHC (Lindane)             | 55     |        | 68     |    |       |     | 41, 43 |     | 19            | 30     |
| Biochemical oxygen demand (BOD) |        |        | 65     |    |       |     |        |     | 13, 20,<br>21 |        |
| Bismuth                         |        | 78, 79 |        |    | 62    |     |        |     |               |        |
| Boron                           |        | 79     | 66, 67 |    |       |     | 38     |     | 14, 16,<br>20 | 26     |
| Bromacil                        |        |        |        |    |       |     |        |     | 19            | 30     |
| Bromate                         |        | 77     | 66     |    |       |     |        |     |               | 27     |
| Bromide                         | 54, 57 | 77     | 66     |    |       |     | 39     |     | 16            | 27, 30 |
| Bromine                         | 57     |        |        |    |       |     |        |     |               |        |
| Bromobenzene                    |        |        |        |    |       |     | 40     |     | 17            | 29     |
| Bromochloroacetic acid          |        |        |        |    |       |     |        |     |               | 29     |
| Bromochloromethane              |        |        |        |    |       |     | 40     |     | 17            | 29     |

| B (continued)               | AE     | Cal | LLCRM | MB | RChem | RGT | Soil  | UST    | WP | WS |
|-----------------------------|--------|-----|-------|----|-------|-----|-------|--------|----|----|
| Bromodichloromethane        | 54     |     | 69    |    |       |     | 40    |        | 17 | 29 |
| Bromoform                   | 54     |     | 69    |    |       |     | 40    |        | 17 | 29 |
| Bromomethane                | 54     |     | 71    |    |       |     | 40    |        | 17 | 29 |
| 4-Bromophenyl phenyl ether  | 55     |     |       |    |       |     | 42    |        | 18 |    |
| Bromoxynil                  |        |     | 68    |    |       |     |       |        |    |    |
| BTEX                        |        |     |       |    |       |     | 40    | 48, 49 | 17 |    |
| BTEX & MTBE                 |        |     |       |    |       |     | 40    | 48     | 17 |    |
| Butachlor                   |        |     |       |    |       |     |       |        | 19 | 30 |
| 2-Butanone (MEK)            | 54, 55 |     |       |    |       |     | 40-41 |        | 17 |    |
| tert-Butyl Alcohol          |        |     |       |    |       |     |       |        |    | 29 |
| Butylate                    |        |     |       |    |       |     |       |        | 19 |    |
| Butylbenzene                |        |     |       |    |       |     | 40    |        | 17 | 29 |
| Butyl benzyl phthalate      | 55     |     |       |    |       |     | 42    |        | 18 | 31 |
| Butyraldehyde (butanal)     | 55     |     |       |    |       |     |       |        |    |    |
| bis(2-chloroisopropyl)ether | 55     |     |       |    |       |     | 42    |        | 18 |    |

| С                                     | AE | Cal    | LLCRM  | MB | RChem  | RGT | Soil   | UST | WP            | WS     |
|---------------------------------------|----|--------|--------|----|--------|-----|--------|-----|---------------|--------|
| Cadmium                               | 56 | 78, 79 | 66, 67 |    |        |     | 38, 45 |     | 14, 20,       | 26     |
| Calcium                               |    | 77, 79 | 65     |    |        |     | 38, 45 |     | 22<br>12, 21, | 26, 28 |
| Calcium hardness as CaCO <sub>3</sub> |    |        |        |    |        |     | ·      |     | 20            | 26     |
| catcium naruness as caco3             |    |        |        |    |        |     |        |     | 21            | 20     |
| Carbaryl                              |    |        |        |    |        |     | 43     |     | 19            | 30     |
| Carbazole                             | 55 |        |        |    |        |     | 42     |     | 18            |        |
| Carbofuran                            |    |        |        |    |        |     | 43     |     | 19            | 30     |
| Carbon disulfide                      | 54 |        | 69     |    |        |     | 40     |     | 17            |        |
| Carbon tetrachloride                  | 54 |        | 69     |    |        |     | 40-41  |     | 17            | 29     |
| Carbophenothion                       |    |        |        |    |        |     |        |     | 19            |        |
| Ceriodaphnia dubia                    |    |        |        |    |        |     |        |     |               |        |
| Chemical oxygen demand (COD)          |    | 77     | 65     |    |        |     |        |     | 13, 20,<br>21 |        |
| Chloral Hydrate                       |    |        |        |    |        |     |        |     |               | 29     |
| Chloramben                            |    |        |        |    |        |     | 42     |     | 17            | 31     |
| Chlorate                              |    | 77     | 66     |    |        |     |        |     |               | 27     |
| Chlordane                             | 55 |        | 68     |    |        |     | 42, 43 |     | 19            | 30     |
| Chlorfenvinphos                       |    |        | 68     |    |        |     |        |     |               |        |
| Chloride                              |    | 77, 78 | 65     |    |        |     | 39     |     | 12, 20,<br>21 | 26     |
| Chlorine                              | 57 |        | 65     |    |        |     |        |     |               |        |
| Chlorite                              |    | 77     | 66     |    |        |     |        |     |               | 27     |
| 4-Chloro-3-methylphenol               | 55 |        |        |    |        |     | 42     |     | 18            |        |
| 4-Chloroaniline                       | 55 |        |        |    |        |     | 42     |     | 18            |        |
| Chlorobenzene                         | 54 |        | 69     |    |        |     | 40, 41 |     | 17            | 29     |
| Chlorodibromomethane                  | 54 |        | 69     |    |        |     | 40     |     | 17            | 29     |
| Chloroethane                          | 54 |        | 69     |    |        |     | 40     |     | 17            | 29     |
| bis(2-Chloroethoxy)methane            | 55 |        |        |    |        |     | 42     |     | 18            |        |
| 2-Chloroethyl vinyl ether             | 54 |        | 69     |    |        |     | 40     |     | 17            |        |
| bis(2-chloroethyl)ether               | 55 |        |        |    |        |     | 42     |     | 18            |        |
| Chloroform                            | 54 |        | 70     |    |        |     | 40, 41 |     | 17            | 29     |
| Chloromethane                         | 54 |        | 69     |    |        |     | 40     |     | 17            | 29     |
| 1-Chloronaphthalene                   | 55 |        |        |    |        |     | 42     |     | 18            |        |
| 2-Chloronaphthalene                   | 55 |        |        |    |        |     | 42     |     | 18            |        |
| 2-Chlorophenol                        | 55 |        |        |    |        |     | 42     |     | 18            |        |
| 4-Chlorophenyl phenyl ether           | 55 |        |        |    |        |     | 42     |     | 18            |        |
| Chlorotoluene                         |    |        |        |    |        |     | 40, 42 |     | 17            | 29     |
| Chlorpyrifos                          |    |        | 68     |    |        |     | 43     |     | 19            |        |
| Chlortoluron                          |    |        | 69     |    |        |     |        |     |               |        |
| Chromium                              | 56 | 78, 79 | 66     |    |        |     | 38, 45 |     | 14, 20,<br>22 | 26     |
| Chrysene                              | 55 |        | 68     |    |        |     | 42     |     | 18            | 31     |
| Cobalt                                | 56 | 78, 79 | 66, 67 |    | 60, 62 |     | 38, 45 |     | 14, 20,<br>22 |        |
| Coliforms                             |    |        |        |    |        |     |        |     |               |        |
| Color                                 |    |        | 65     |    |        |     |        |     | 15            | 28     |
| Specific conductance at 25 °C         |    |        | 00     |    |        |     |        |     | 12, 20        | 26     |
| Conductivity                          |    |        | 65     |    |        |     |        |     | 21            |        |
| Copper                                | 56 | 78, 79 | 66, 67 |    |        |     | 38, 45 |     | 14, 20,<br>22 | 26     |
| Corrosivity                           |    |        |        |    |        |     |        |     | LL            | 28     |
| Corrosivity/pH                        |    |        |        |    |        |     | 39     |     |               |        |
| Crotonaldehyde                        | 55 |        |        |    |        |     |        |     |               |        |
| Curium                                |    |        |        |    | 62     |     |        |     |               |        |
| Cyanazine                             |    |        |        |    |        |     |        |     | 19            |        |
| Cyanide                               |    | 77     | 65     |    |        |     | 39, 45 |     | 15, 22        | 28     |
| Cyclohexane                           | 54 |        |        |    |        |     |        |     |               |        |
| Cypermethrin                          |    |        | 68     |    |        |     |        |     |               |        |



| D                                       | AE               | Cal | LLCRM | МВ | RChem | RGT | Soil   | UST           | WP             | WS       |
|-----------------------------------------|------------------|-----|-------|----|-------|-----|--------|---------------|----------------|----------|
| 2,4-D                                   |                  |     | 69    |    |       |     | 42     |               | 17             | 31       |
| Dacthal diacid (DCPA)                   |                  |     | 09    |    |       |     | 42     |               | 17             | 31       |
| Dalapon                                 |                  |     |       |    |       |     | 42     |               | 17             | 31       |
| Daphnia magna                           |                  |     |       |    |       |     | 42     |               | - ''           | 31       |
| Daphnia pulex                           |                  |     |       |    |       |     |        |               |                |          |
| 2,4-DB                                  |                  |     | 68    |    |       |     | 42     |               | 17             | 31       |
| 4,4'-DDD                                | 55               |     | 68    |    |       |     | 43     |               | 19             |          |
| 4,4'-DDE                                | 55               |     | 68    |    |       |     | 43     |               | 19             |          |
| 2,4-DDT                                 |                  |     | 68    |    |       |     |        |               |                |          |
| 4,4'-DDT                                | 55               |     | 68    |    |       |     | 43     |               | 19             |          |
| Decachlorobiphenyl                      |                  |     |       |    |       |     |        |               | 10             | 31       |
| Demeton O & S                           |                  |     |       |    |       |     | 43     |               | 19<br>19       |          |
| Diaminoatrazine<br>Diazinon             |                  |     | 68    |    |       |     | 43     |               | 19             | 30       |
| Dibenz(a,h)anthracene                   | 55               |     | 68    |    |       |     | 42     |               | 18             | 31       |
| Dibenzofuran                            | 55               |     | 00    |    |       |     | 42     |               | 18             | 31       |
| 1,2-Dibromo-3-chloropropane             | 54               |     | 70    |    |       |     | 40     |               | 17-18          | 30       |
| (DBCP)                                  |                  |     |       |    |       |     |        |               |                |          |
| Dibromoacetic Acid                      |                  |     |       |    |       |     |        |               |                | 29       |
| 1,2-Dibromoethane (EDB)                 | 54               |     | 70    |    |       |     | 40     |               | 17-18          |          |
| Dibromomethane                          | 54               |     | 70    |    |       |     | 40     |               | 17             | 29       |
| Dicamba                                 |                  |     | 68    |    |       |     | 42     |               | 17             | 31       |
| Dichloroacetic Acid                     | E 4 55           |     | 70    |    |       |     | 10 12  |               | 17.10          | 29       |
| 1,2-Dichlorobenzene 1,3-Dichlorobenzene | 54, 55<br>54, 55 |     | 70    |    |       |     | 40, 42 |               | 17-18<br>17-18 | 29<br>29 |
| 1,4-Dichlorobenzene                     | 54, 55           |     | 70    |    |       |     | 40, 42 |               | 17-18          | 29       |
| 3,3'-Dichlorobenzidine                  | 55               |     | 10    |    |       |     | 40, 42 |               | 18             | 29       |
| 3,5-Dichlorobenzoic Acid                | 33               |     |       |    |       |     | 42     |               | 17             | 31       |
| Dichlorodifluoromethane                 | 54               |     | 70    |    |       |     | 40     |               | 17             | 29       |
| 1,1-Dichloroethane                      | 54               |     | 70    |    |       |     | 40     |               | 17             | 29       |
| 1,1-Dichloroethene                      | 54               |     | 70    |    |       |     | 40     |               | 17             |          |
| 1,2-Dichloroethane                      | 54               |     | 70    |    |       |     | 40, 41 |               | 17             | 29       |
| cis-1,2-Dichloroethene                  | 54               |     | 70    |    |       |     |        |               | 17             |          |
| trans-1,2-Dichloroethene                | 54               |     | 70    |    |       |     |        |               | 17             |          |
| 1,1-Dichloroethylene                    | 54               |     | 70    |    |       |     | 40, 41 |               |                | 29       |
| cis-1,2-Dichloroethylene                | 54               |     | 70    |    |       |     | 40     |               |                | 29       |
| trans-1,2-Dichloroethylene              |                  |     | 70    |    |       |     | 40     |               | 10             | 29       |
| 2,4-Dichlorophenol                      | 55               |     |       |    |       |     | 42     |               | 18             |          |
| 2,6-Dichlorophenol                      | 55<br>54         |     | 70    |    |       |     | 42     |               | 18<br>17       | 29       |
| 1,2-Dichloropropane 1,3-Dichloropropane | J4               |     | 10    |    |       |     | 40     |               | 17             | 29       |
| 2,2-Dichloropropane                     |                  |     |       |    |       |     | 40     |               | 17             | 29       |
| 1,1-Dichloropropene                     |                  |     |       |    |       |     | 40     |               | 17             | 29       |
| cis-1,3-Dichloropropene                 | 54               |     | 70    |    |       |     |        |               | 17             | 29       |
| trans-1,3-Dichloropropene               | 54               |     | 70    |    |       |     |        |               | 17             | 29       |
| cis-1,3-Dichloropropylene               | 54               |     |       |    |       |     | 40     |               |                |          |
| trans-1,3-Dichloropropylene             | 54               |     |       |    |       |     | 40     |               |                |          |
| 1,2-Dichlorotetrafluoroethane           | 54               |     |       |    |       |     |        |               |                |          |
| Dichlorprop                             |                  |     | 68    |    |       |     | 42     |               | 17             | 31       |
| Dichlorvos (DDVP)                       |                  |     | 68    |    |       |     | 43     |               | 19             |          |
| 1,1-Dichloroethylene                    | 54               |     | 70    |    |       |     | 40, 41 |               | 10             | 29       |
| Dieldrin Diesel range organics          | 55               |     | 68    |    |       |     | 43     | 16 10         | 19<br>18       | 30       |
| (DRO)                                   |                  |     |       |    |       |     | 42     | 46, 48,<br>50 | 10             |          |
| Diethylene glycol                       |                  |     |       |    |       |     | 42     |               | 18             |          |
| Diethyl phthalate                       | 55               |     | 68    |    |       |     | 42     |               | 18             | 31       |
| Di-isopropylether (DIPE)                |                  |     |       |    |       |     |        |               |                | 29       |
| Dimethoate                              |                  |     |       |    |       |     |        |               | 19             |          |
| Dimethyl phthalate                      | 55               |     | 68    |    |       |     | 42     |               | 18             | 31       |
| 2,5-Dimethylbenzaldehyde                | 55               |     |       |    |       |     |        |               |                |          |
| 2,4-Dimethylphenol                      | 55               |     |       |    |       |     | 42     |               | 18             |          |
| Di-n-butyl phthalate                    | 55               |     | 68    |    |       |     | 42     |               | 18             | 31       |
| 1,3-Dinitrobenzene                      |                  |     |       |    |       |     | 42     |               | 18             |          |
| 2,4-Dinitrophenol                       | 55               |     |       |    |       |     | 42     |               | 18             |          |
| 2,4-Dinitrotoluene                      | 55<br>55         |     |       |    |       |     | 41, 42 |               | 18<br>18       |          |
| 2,6-Dinitrotoluene                      | 55<br>55         |     | 68    |    |       |     | 42     |               | 18             | 31       |
| Di-n-octyl phthalate<br>Dinoseb         | 23               |     | Uď    |    |       |     | 42     |               | 18             | 31       |
| Dioxacarb                               |                  |     |       |    |       |     | 43     |               | 11             | JI       |
| Dioxathion                              |                  |     |       |    |       |     | -13    |               | 19             |          |
| Dioxin                                  |                  |     |       |    |       |     |        |               |                | 31       |
| Diquat                                  |                  |     |       |    |       |     |        |               |                | 31       |
| Dissolved organic carbon (DOC)          |                  |     | 65    |    |       |     |        |               |                | 31       |
| Disulfoton                              |                  |     |       |    |       |     | 43     |               | 19             |          |
| Diuron                                  |                  |     |       |    |       |     | 43     |               | 19             |          |

| E                             | AE | Cal | LLCRM | MB     | RChem | RGT | Soil  | UST | WP | WS |
|-------------------------------|----|-----|-------|--------|-------|-----|-------|-----|----|----|
| E. coli                       |    |     |       | 33, 35 |       |     |       |     |    |    |
| Endosulfan                    | 55 |     | 68    |        |       |     | 43    |     | 19 |    |
| Endosulfan sulfate            | 55 |     | 68    |        |       |     | 43    |     | 19 |    |
| Endothall                     |    |     |       |        |       |     |       |     |    | 31 |
| Endrin                        | 55 |     | 68    |        |       |     | 41,43 |     | 19 | 30 |
| Endrin aldehyde               | 55 |     | 68    |        |       |     | 43    |     | 19 |    |
| Endrin ketone                 | 55 |     | 68    |        |       |     | 43    |     | 19 |    |
| EPTC (Eptam)                  |    |     |       |        |       |     |       |     | 19 |    |
| Ethion                        |    |     |       |        |       |     |       |     | 19 |    |
| Ethoprop                      |    |     |       |        |       |     |       |     | 19 |    |
| Ethyl tert-butyl ether (ETBE) |    |     |       |        |       |     |       |     |    | 29 |
| Ethylbenzene                  | 54 |     | 70    |        |       |     | 40    |     | 17 | 29 |
| Ethylene dibromide (EDB)      |    |     |       |        |       |     |       |     |    | 30 |
| Ethylene glycol               |    |     |       |        |       |     | 42    |     | 18 |    |
| bis(2-Ethylhexyl)adipate      |    |     | 68    |        |       |     |       |     |    | 31 |
| bis(2-Ethylhexyl)phthalate    | 55 |     | 68    |        |       |     | 42    |     | 18 | 31 |
| p-Ethyltoluene                | 54 |     |       |        |       |     |       |     |    |    |

| F                                       | AE | Cal    | LLCRM | MB | RChem | RGT | Soil | UST | WP            | WS |
|-----------------------------------------|----|--------|-------|----|-------|-----|------|-----|---------------|----|
| Famphur                                 |    |        |       |    |       |     |      |     | 19            |    |
| Fathead minnow<br>(Pimephales promelas) |    |        |       |    |       |     |      |     |               |    |
| Fenitrothion                            |    |        | 68    |    |       |     |      |     |               |    |
| Fenthion                                |    |        | 68    |    |       |     |      |     |               |    |
| Ferrous Ammonium Sulfate                |    |        |       |    |       | 83  |      |     |               |    |
| Fluoranthene                            | 55 |        | 68    |    |       |     | 42   |     | 18            | 31 |
| Fluorene                                | 55 |        | 68    |    |       |     | 42   |     | 18            | 31 |
| Fluoride                                | 57 | 77, 78 | 65    |    |       |     | 39   |     | 12, 20,<br>21 | 26 |
| Fluoride Buffer                         |    |        |       |    |       | 83  |      |     |               |    |
| Fluorotrichloromethane                  |    |        |       |    |       |     |      |     |               | 29 |
| Fonofos                                 |    |        |       |    |       |     |      |     | 19            |    |
| Formaldehyde                            | 55 |        |       |    |       |     |      |     |               |    |
| Free Residual Chlorine                  |    |        |       |    |       |     |      |     |               | 28 |

| G                             | AE | Cal | LLCRM | MB | RChem                        | RGT | Soil | UST    | WP | WS |
|-------------------------------|----|-----|-------|----|------------------------------|-----|------|--------|----|----|
| Gasoline range organics (GRO) |    |     |       |    |                              |     | 40   | 48, 50 | 17 |    |
| Glyphosate                    |    |     | 69    |    |                              |     |      |        |    | 31 |
| Gross Alpha                   |    |     |       |    | 58, 59,<br>60, 61,<br>62, 63 |     |      |        |    |    |
| Gross Alpha/Beta              |    |     |       |    | 58, 59,<br>60, 61,<br>62, 63 |     |      |        |    |    |
| Gross Beta                    |    |     |       |    | 60, 61,<br>62, 63            |     |      |        |    |    |

| Н                             | AE     | Cal | LLCRM  | MB | RChem | RGT | Soil   | UST | WP     | WS |
|-------------------------------|--------|-----|--------|----|-------|-----|--------|-----|--------|----|
| Halides                       | 57     |     |        |    |       |     |        |     | 15     |    |
| Halogens                      | 57     |     |        |    |       |     |        |     |        |    |
| HEM                           |        |     |        |    |       |     |        | 50  | 13     |    |
| Heptachlor                    | 55     |     | 68     |    |       |     | 41,43  |     | 19     | 30 |
| Heptachlor epoxide            | 55     |     | 68     |    |       |     | 41,43  |     | 19     | 30 |
| n-Heptane                     | 54     |     |        |    |       |     |        |     |        |    |
| Heterotrophic                 |        |     |        | 35 |       |     |        |     |        |    |
| Hexachlorobenzene             | 55     |     | 68     |    |       |     | 41,42  |     | 18     | 30 |
| Hexachlorobutadiene           | 54, 55 |     | 70     |    |       |     | 40, 42 |     | 17, 18 | 29 |
| Hexachlorocyclopentadiene     | 55     |     |        |    |       |     | 42     |     | 18     | 30 |
| Hexachloroethane              | 55     |     |        |    |       |     | 40, 42 |     | 17, 18 |    |
| Hexaldehyde (hexanal)         | 55     |     |        |    |       |     |        |     |        |    |
| n-Hexane                      | 54     |     |        |    |       |     | 39     |     |        |    |
| n-Hexane extractable material |        |     |        |    |       |     | 39     |     |        |    |
| 2-Hexanone                    | 54     |     | 70     |    |       |     | 40     |     | 17     |    |
| Hexavalent chromium           | 53, 56 |     | 64, 66 |    |       |     | 38     |     | 14, 21 | 26 |
| Hexazinone                    |        |     |        |    |       |     |        |     | 19     |    |
| HMX                           |        |     |        |    |       |     | 42     |     | 18     |    |
| Hydrogen bromide              | 57     |     |        |    |       |     |        |     |        |    |
| Hydrogen chloride             | 57     |     |        |    |       |     |        |     |        |    |
| Hydrogen fluoride             | 57     |     |        |    |       |     |        |     |        |    |
| 3-Hydroxycarbofuran           |        |     |        |    |       |     | 43     |     | 19     | 30 |

| AE    | Air & Emissions | RGT  | Reagents                 |
|-------|-----------------|------|--------------------------|
| Cal   | Calibration     | Soil | Soil                     |
| LLCRM | Low-Level CRMs  | UST  | Underground Storage Tank |
| MB    | Microbiology    | WP   | Water Pollution          |
| RChem | Radiochemistry  | WS   | Water Supply             |

| 1                                     | AE | Cal    | LLCRM  | MB | RChem  | RGT | Soil | UST | WP            | WS |
|---------------------------------------|----|--------|--------|----|--------|-----|------|-----|---------------|----|
| Ignitability/Flashpoint               |    |        |        |    |        |     | 39   |     |               |    |
| Indeno(1,2,3-cd)pyrene                | 55 |        | 68     |    |        |     | 42   |     | 18            | 31 |
| Inland silverside (Menidia beryllina) |    |        |        |    |        |     |      |     |               |    |
| lodide                                |    | 77     |        |    |        |     |      |     |               |    |
| loxynil                               |    |        | 68     |    |        |     |      |     |               |    |
| Iron                                  |    | 78, 79 | 66, 67 |    | 62, 63 |     | 38   |     | 14, 20,<br>22 | 26 |
| Isophorone                            | 55 |        |        |    |        |     | 42   |     | 18            |    |
| Isopropylbenzene                      |    |        |        |    |        |     | 40   |     | 17            | 29 |
| Isopropyltoluene                      |    |        |        |    |        |     | 40   |     | 17            | 29 |
| Isovaleraldehyde                      | 55 |        |        |    |        |     |      |     |               |    |

| L         | AE | Cal    | LLCRM  | MB | RChem | RGT | Soil   | UST | WP            | WS |
|-----------|----|--------|--------|----|-------|-----|--------|-----|---------------|----|
| Lanthanum |    | 79     |        |    |       |     |        |     |               |    |
| Lead      | 56 | 78, 79 | 66, 67 |    | 62    |     | 38, 45 |     | 14, 20,<br>22 | 26 |
| Lithium   |    | 78     | 66     |    |       |     |        |     | 14            |    |

| M                              |        | Cal           | LLCRM     | MB | RChem | RGT | Soil   | UST | WP            | WS |
|--------------------------------|--------|---------------|-----------|----|-------|-----|--------|-----|---------------|----|
| Magnesium                      |        | 77, 78,<br>79 | 65        |    |       |     | 38, 45 |     | 12, 20,<br>21 | 26 |
| Malathion                      |        |               | 68        |    |       |     | 43     |     | 19            |    |
| Manganese                      | 56     | 78, 79        | 66,<br>67 |    | 62-63 | 83  | 38, 45 |     | 14, 20,<br>22 | 26 |
| MBAS-Surfactants               |        | 77            |           |    |       |     |        |     | 15            | 28 |
| MCPA                           |        |               | 69        |    |       |     | 42     |     | 17            |    |
| MCPB                           |        |               | 69        |    |       |     |        |     |               |    |
| MCPP                           |        |               |           |    |       |     | 42     |     | 17            |    |
| Mercury                        | 56     | 78            | 66        |    |       |     | 38, 45 |     | 14, 22        | 26 |
| Metals & Cyanide Blank Sand    |        |               |           |    |       |     | 45     |     |               |    |
| Metals & Cyanide Blank Soil    |        |               |           |    |       |     | 45     |     |               |    |
| Methiocarb                     |        |               |           |    |       |     | 43     |     | 19            | 30 |
| Methomyl                       |        |               |           |    |       |     | 43     |     | 19            | 30 |
| Methoxychlor                   | 55     |               | 68        |    |       |     | 41, 43 |     | 19            | 30 |
| Methyl ethyl ketone (MEK)      | 54, 55 |               | 70        |    |       |     | 40, 41 |     | 17            |    |
| Methyl tert-butyl ether (MTBE) | 54     |               | 70        |    |       |     | 40     |     | 17            | 29 |
| 4-Methyl-2-pentanone (MIBK)    | 54     |               | 70        |    |       |     | 40     |     | 17            |    |
| 2-Methyl-4,6-dinitrophenol     | 55     |               |           |    |       |     | 42     |     | 18            |    |
| Methylene chloride             | 54     |               | 70        |    |       |     | 40     |     | 17            | 29 |
| 2-Methylnaphthalene            | 55     |               |           |    |       |     | 42     |     | 18            |    |
| 2-Methylphenol                 |        |               |           |    |       |     | 41, 42 |     | 18            |    |
| 3 & 4-Methylphenol             |        |               |           |    |       |     | 41, 42 |     |               |    |
| 2-Methylphenol (o-Cresol)      | 55     |               |           |    |       |     |        |     |               |    |
| 4-Methylphenol (p-Cresol)      | 55     |               |           |    |       |     |        |     |               |    |
| Metolachlor                    |        |               |           |    |       |     |        |     | 19            | 30 |
| Metribuzin                     |        |               |           |    |       |     |        |     | 19            | 30 |
| Mevinphos                      |        |               | 68        |    |       |     |        |     |               |    |
| Molinate (Ordram)              |        |               |           |    |       |     |        |     |               | 30 |
| Molybdenum                     |        | 78, 79        | 66, 67    |    |       |     | 38     |     | 14, 20,<br>22 | 26 |
| Monochloroacetic Acid          |        |               |           |    |       |     |        |     |               | 29 |
| Monuron                        |        |               | 68        |    |       |     |        |     |               |    |

| N                          | AE     | Cal    | LLCRM  | MB | RChem | RGT | Soil          | UST | WP            | WS     |
|----------------------------|--------|--------|--------|----|-------|-----|---------------|-----|---------------|--------|
| Naphthalene                | 54, 55 |        | 68, 70 |    |       |     | 40, 42        |     | 17, 18        | 29, 31 |
| Napropamide                |        |        |        |    |       |     |               |     | 19            |        |
| Nickel                     | 56     | 78, 79 | 66, 67 |    |       |     | 38            |     | 14, 20,<br>22 | 26     |
| Nitrate as N               |        | 77, 78 |        |    |       |     | 39            |     | 12, 20,<br>21 | 26     |
| Nitrate as NO <sub>3</sub> |        | 77     | 67     |    |       |     |               |     |               |        |
| Nitrate plus nitrite as N  |        |        |        |    |       |     |               |     | 12, 20        | 26     |
| Nitrite as N               |        | 77     |        |    |       |     |               |     | 12            | 27     |
| Nitrite as NO <sub>2</sub> |        | 77     | 67     |    |       |     |               |     |               |        |
| 2-Nitroaniline             | 55     |        |        |    |       |     | 42            |     | 18            |        |
| 3-Nitroaniline             | 55     |        |        |    |       |     | 42            |     | 18            |        |
| 4-Nitroaniline             | 55     |        |        |    |       |     | 42            |     | 18            |        |
| Nitrobenzene               | 55     |        |        |    |       |     | 40, 41,<br>42 |     | 17, 18        |        |
| 2-Nitrophenol              | 55     |        |        |    |       |     | 42            |     | 18            |        |
| 4-Nitrophenol              | 55     |        |        |    |       |     | 42            |     | 18            |        |
| N-Nitrosodiethylamine      | 55     |        |        |    |       |     | 42            |     | 18            |        |

| N (continued)                 | AE | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP | WS |
|-------------------------------|----|-----|-------|----|-------|-----|------|-----|----|----|
| N-Nitrosodimethylamine (NDMA) | 55 |     |       |    |       |     | 42   |     | 18 |    |
| N-Nitroso-di-n-propylamine    | 55 |     |       |    |       |     | 42   |     | 18 |    |
| N-Nitrosodiphenylamine        | 55 |     |       |    |       |     | 42   |     | 18 |    |
| 2-Nitrotoluene                |    |     |       |    |       |     | 42   |     | 18 |    |
| 3-Nitrotoluene                |    |     |       |    |       |     | 42   |     | 18 |    |
| 4-Nitrotoluene                |    |     |       |    |       |     | 42   |     | 18 |    |

| 0                           | AE | Cal | LLCRM | МВ | RChem | RGT | Soil | UST | WP            | WS |
|-----------------------------|----|-----|-------|----|-------|-----|------|-----|---------------|----|
| Oil & Grease                |    |     |       |    |       |     | 39   |     | 13, 20,<br>21 |    |
| ortho-Phosphate as P        |    |     |       |    |       |     |      |     | 12,20,<br>21  | 27 |
| Organophosphorus Pesticides |    |     | 68    |    |       |     | 43   |     | 19            | 30 |
| Oxamyl                      |    |     |       |    |       |     | 43   |     | 19            | 30 |
| Oxides of nitrogen          | 57 |     |       |    |       |     |      |     |               |    |

| Oxides of filtrogen          | JI |        |       |    |       |     |        |        |               |    |
|------------------------------|----|--------|-------|----|-------|-----|--------|--------|---------------|----|
| P                            | AE | Cal    | LLCRM | MB | RChem | RGT | Soil   | UST    | WP            | WS |
| Paraquat                     |    |        |       |    |       |     |        |        |               | 31 |
| Parathion                    |    |        | 68    |    |       |     | 43     |        | 19            |    |
| Particulate matter           | 57 |        |       |    |       |     |        |        |               |    |
| PCB 28                       |    |        | 68    |    |       |     |        |        |               |    |
| PCB 46                       |    |        | 68    |    |       |     |        |        |               |    |
| PCB 85                       |    |        | 68    |    |       |     |        |        |               |    |
| PCB 118                      |    |        | 68    |    |       |     |        |        |               |    |
| PCB 132                      |    |        | 68    |    |       |     |        |        |               |    |
| PCB 147                      |    |        | 68    |    |       |     |        |        |               |    |
| PCB 180                      |    |        | 68    |    |       |     |        |        |               |    |
| PCBs in Oil                  |    |        |       |    |       |     | 44     |        | 17            |    |
| PCBs in Soil                 |    |        |       |    |       |     | 42,44  |        |               |    |
| PCBs in Water                |    |        |       |    |       |     | 44     |        | 17            |    |
| Pentachlorobenzene           | 55 |        | 68    |    |       |     | 42     |        | 18            |    |
| Pentachlorophenol            | 55 |        |       |    |       |     | 42, 43 |        | 17, 18        | 31 |
| Petroleum Hydrocarbons Fuels |    |        |       |    |       |     | 41     | 48, 51 | 13            |    |
| Perchlorate                  |    | 77     |       |    |       |     |        | ,      |               | 28 |
| рН                           |    | 79     | 65    |    |       | 82  | 39     |        | 12, 16,       | 26 |
| P                            |    |        |       |    |       | 02  | "      |        | 20, 21        |    |
| Phenanthrene                 | 55 |        | 68    |    |       |     | 42     |        | 18            | 31 |
| Phenol                       | 55 | 77     |       |    |       |     | 42     |        | 15, 18        |    |
| Phenolphthalein              |    |        |       |    |       | 83  |        |        |               |    |
| Phorate                      |    |        |       |    |       |     | 43     |        | 19            |    |
| Phosmet                      |    |        |       |    |       |     |        |        | 19            |    |
| ortho-Phosphate as P         |    |        |       |    |       |     |        |        | 12,20,<br>21  | 27 |
| Phosphate as P               |    | 77, 78 |       |    |       |     | 39     |        | 2.            |    |
| Phosphate as PO <sub>4</sub> |    | 77     |       |    |       |     |        |        |               |    |
| Phosphorus                   | 56 | 78, 79 | 67    |    |       |     |        |        |               |    |
| Picloram                     |    | .,     |       |    |       |     | 42     |        | 17            | 31 |
| Plutonium                    |    |        |       |    | 61-63 |     |        |        |               |    |
| Potassium                    |    | 78, 79 | 65    |    | 62    |     | 38     |        | 12, 20,<br>21 | 26 |
| Potassium Cyanide (KCN)      |    |        |       |    |       | 83  |        |        | 21            |    |
| Potassium Dichromate         |    |        |       |    |       | 83  |        |        |               |    |
| Potassium Hydroxide (KOH)    |    |        |       |    |       | 82  |        |        |               |    |
| Potassium Permanganate       |    |        |       |    |       | 83  |        |        |               |    |
| Promecarb                    |    |        |       |    |       |     | 43     |        |               |    |
| Prometon                     |    |        |       |    |       |     |        |        | 19            | 30 |
| Prometryn                    |    |        |       |    |       |     |        |        | 19            |    |
| Pronamide                    |    |        |       |    |       |     |        |        | 19            |    |
| Propachlor                   |    |        |       |    |       |     |        |        | 19            | 30 |
| Propazine                    |    |        |       |    |       |     |        |        | 19            |    |
| Propham                      |    |        |       |    |       |     | 43     |        | 19            |    |
| Propionaldehyde (propanal)   | 55 |        |       |    |       |     |        |        |               |    |
| Propoxur                     |    |        |       |    |       |     | 43     |        |               |    |
| n-Propylbenzene              |    |        |       |    |       |     | 40     |        | 17            | 29 |
| Propylene                    | 54 |        |       |    |       |     |        |        |               |    |
| Propylene glycol             |    |        |       |    |       |     | 42     |        | 18            |    |
| Propyzamide                  |    |        | 68    |    |       |     |        |        |               |    |
| Pyrene                       | 55 |        | 68    |    |       |     | 42     |        | 18            | 31 |
| Pyridine                     | 55 |        |       |    |       |     | 41,42  |        | 18            |    |



| R                            | AE | Cal | LLCRM | MB | RChem  | RGT | Soil | UST | WP | WS |
|------------------------------|----|-----|-------|----|--------|-----|------|-----|----|----|
| Radium                       |    |     |       |    | 60, 61 |     |      |     |    |    |
| RDX                          |    |     |       |    |        |     | 42   |     | 18 |    |
| Residual Range Organic (RRO) |    |     |       |    |        |     |      | 49  |    |    |
| Ronnel                       |    |     |       |    |        |     | 43   |     | 19 |    |

| S                                         | AE | Cal    | LLCRM     | МВ | RChem | RGT | Soil   | UST | WP            | WS |
|-------------------------------------------|----|--------|-----------|----|-------|-----|--------|-----|---------------|----|
| sec-Butylbenzene                          |    |        |           |    |       |     | 40     |     | 17            | 29 |
| Selenium                                  | 56 | 78, 79 | 66, 67    |    |       |     | 38, 45 |     | 14, 20,<br>22 | 26 |
| Settleable solids                         |    |        |           |    |       |     |        |     | 17            |    |
| SGT-HEM                                   |    |        |           |    |       |     |        | 50  | 13            |    |
| Sheepshead minnow (Cyprinodon variegarus) |    |        |           |    |       |     |        |     |               |    |
| Silica                                    |    | 78     |           |    |       |     |        |     | 13, 15        | 28 |
| Silicon                                   |    | 78     |           |    |       |     |        |     |               |    |
| Silver                                    | 56 | 78, 79 | 66, 67    |    |       |     | 38, 45 |     | 14, 20,<br>22 | 26 |
| Silver Nitrate                            |    |        |           |    |       | 82  |        |     |               |    |
| Simazine                                  |    |        | 69        |    |       |     |        |     | 19            | 30 |
| Sodium                                    |    | 78, 79 | 65        |    |       |     | 38, 45 |     | 12, 20,<br>21 | 26 |
| Sodium Carbonate                          |    |        |           |    |       | 83  |        |     |               |    |
| Sodium Hydroxide                          |    |        |           |    |       | 83  |        |     |               |    |
| Sodium Thiosulfate                        |    |        |           |    |       | 83  |        |     |               |    |
| Stirophos (tetrachlorovinphos)            |    |        |           |    |       |     | 43     |     | 19            |    |
| Strontium                                 |    | 78, 79 | 66,<br>67 |    | 60-63 |     | 38     |     | 14, 20,<br>22 |    |
| Styrene                                   | 54 |        | 70        |    |       |     | 40     |     | 17            | 29 |
| Sulfate                                   |    | 77-78  | 65        |    |       |     | 39     |     | 12, 20,<br>21 | 26 |
| Sulfur dioxide                            | 57 |        |           |    |       |     |        |     |               |    |
| Sulfuric acid                             | 57 |        |           |    |       |     |        |     |               |    |

| T                             | AE | Cal    | LLCRM  | МВ | RChem         | RGT | Soil | UST | WP                | WS |
|-------------------------------|----|--------|--------|----|---------------|-----|------|-----|-------------------|----|
| Terbacil                      |    |        |        |    |               |     |      |     | 19                |    |
| Terbufos                      |    |        |        |    |               |     | 43   |     | 19                |    |
| 1,2,4,5-Tetrachlorobenzene    | 55 |        |        |    |               |     | 42   |     | 18                |    |
| 1,1,1,2-Tetrachloroethane     | 54 |        | 70     |    |               |     | 40   |     | 17                | 31 |
| 1,1,2,2-Tetrachloroethane     | 54 |        | 70     |    |               |     | 40   |     | 17                | 31 |
| Tetrachloroethene             | 54 |        | 70     |    |               |     | 40   |     | 17                |    |
| Tetrachloroethylene           | 54 |        |        |    |               |     | 41   |     |                   | 31 |
| 2,3,4,6-Tetrachlorophenol     | 55 |        |        |    |               |     | 42   |     | 18                |    |
| Tetraethylene glycol          |    |        |        |    |               |     | 42   |     | 18                |    |
| Tetryl                        |    |        |        |    |               |     | 42   |     | 18                |    |
| Thallium                      | 56 | 78, 79 | 66, 67 |    |               |     | 38   |     | 14, 20,<br>22     | 26 |
| Thiobencarb                   |    |        |        |    |               |     |      |     |                   | 30 |
| Thorium                       |    | 78     |        |    | 60, 62,<br>63 |     |      |     |                   |    |
| Tin                           |    | 78, 79 | 66     |    |               |     | 38   |     | 14, 22            |    |
| Titanium                      |    | 78     |        |    |               |     | 38   |     | 14, 22            |    |
| TISAB                         |    |        |        |    |               | 83  |      |     |                   |    |
| Tolualdehyde                  | 55 |        |        |    |               |     |      |     |                   |    |
| Toluene                       | 54 |        | 70     |    |               |     | 40   |     | 17                | 29 |
| o-Toluidine                   | 55 |        |        |    |               |     | 42   |     | 18                |    |
| Total dissolved solids        |    |        | 65, 66 |    |               |     |      |     | 12, 20,<br>21, 22 | 26 |
| Total hardness                |    |        | 65     |    |               |     |      |     | 12, 20            | 26 |
| Total Kjeldahl Nitrogen       |    | 77     | 67     |    |               |     | 39   |     | 12, 20,<br>21     |    |
| Total Nitrogen                |    |        | 67     |    |               |     |      |     |                   |    |
| Total Organic Carbon (TOC)    |    | 77     | 65     |    |               |     | 39   |     | 13, 20,<br>21     | 28 |
| Total Organic Halides (TOX)   |    | 77     |        |    |               |     |      |     | 15                |    |
| Total Oxidized Nitrogen (TON) |    |        | 67     |    |               |     |      |     |                   |    |
| Total Phenolics (4-AAP)       |    |        | 66     |    |               |     |      |     | 15, 22            |    |
| Total Phosphorus              |    |        | 67     |    |               |     | 39   |     | 12, 20,<br>21     |    |
| Total solids at 89°C          |    |        |        |    |               |     |      |     | 12, 20,<br>22     | 26 |
| Total suspended solids (TSS)  |    |        | 66     |    |               |     |      |     | 12, 20<br>22      | 26 |
| Total volatile solids         |    |        |        |    |               |     |      |     | 12                |    |

| T (continued)             | AE     | Cal | LLCRM | MB | RChem         | RGT | Soil   | UST   | WP     | WS     |
|---------------------------|--------|-----|-------|----|---------------|-----|--------|-------|--------|--------|
| Toxaphene                 |        |     |       |    |               |     | 43     |       | 19     | 30     |
| 2,4,5-TP (Silvex)         |        |     |       |    |               |     | 42     |       | 17     | 31     |
| TPH                       |        |     |       |    |               |     | 41     | 48-50 | 13     |        |
| Trichlopyr                |        |     | 68    |    |               |     |        |       |        |        |
| Trichloroacetic Acid      |        |     |       |    |               |     |        |       |        | 29     |
| 1,2,3-Trichlorobenzene    |        |     |       |    |               |     | 40     |       | 17     | 29     |
| 1,2,4-Trichlorobenzene    | 54, 55 |     | 70    |    |               |     | 40, 42 |       | 17, 18 | 29     |
| 1,1,1-Trichloroethane     | 54     |     | 70    |    |               |     | 40     |       | 17     | 29     |
| 1,1,2-Trichloroethane     | 54     |     | 70    |    |               |     | 40     |       | 17     | 29     |
| Trichloroethene           |        |     | 70    |    |               |     | 40     |       | 17     |        |
| Trichloroethlyene         | 54     |     |       |    |               |     |        |       |        |        |
| Trichlorofluoromethane    | 54     |     | 70    |    |               |     | 40     |       | 17     | 29     |
| 2,4,5-Trichlorophenol     | 55     |     |       |    |               |     | 41,42  |       | 18     |        |
| 2,4,6-Trichlorophenol     | 55     |     |       |    |               |     | 41,42  |       | 18     |        |
| 1,2,3-Trichloropropane    | 54     |     | 70    |    |               |     | 40     |       | 17, 18 | 29, 30 |
| Trichlorotrifluoromethane | 54     |     |       |    |               |     |        |       |        |        |
| Triethylene glycol        |        |     |       |    |               |     | 42     |       | 18     |        |
| Trifluralin               |        |     | 68    |    |               |     |        |       | 19     | 30     |
| 1,2,4-Trimethylbenzene    | 54     |     |       |    |               |     | 40     |       | 17     | 29     |
| 1,3,5-Trimethylbenzene    | 54     |     |       |    |               |     | 40     |       | 17     | 29     |
| 1,3,5-Trinitrobenzene     |        |     |       |    |               |     | 42     |       | 18     |        |
| 2,4,6-Trinitrotoluene     |        |     |       |    |               |     | 42     |       | 18     |        |
| Tritium                   |        |     |       |    | 60, 61,<br>63 |     |        |       |        |        |
| Turbidity                 |        |     |       |    |               |     |        |       | 15     | 28     |

| U                 | AE | Cal | LLCRM | MB | RChem             | RGT | Soil | UST | WP     | WS |
|-------------------|----|-----|-------|----|-------------------|-----|------|-----|--------|----|
| Uranium           |    | 78  |       |    | 60, 61,<br>62, 63 |     | 38   |     | 14, 19 | 26 |
| UV 248 Absorbance |    |     |       |    |                   |     |      |     |        | 28 |

| ٧                        |    | Cal    | LLCRM  | MB | RChem | RGT | Soil   | UST | WP            | WS |
|--------------------------|----|--------|--------|----|-------|-----|--------|-----|---------------|----|
| Valeraldehyde (pentanal) | 55 |        |        |    |       |     |        |     |               |    |
| Vanadium                 |    | 78, 79 | 66, 67 |    |       |     | 38, 45 |     | 14, 20,<br>22 | 26 |
| Vinyl acetate            | 54 |        | 70     |    |       |     | 40     |     | 17            |    |
| Vinyl bromide            | 54 |        |        |    |       |     |        |     |               |    |
| Vinyl chloride           | 54 |        | 70     |    |       |     | 40, 41 |     | 17            | 29 |

| X               |    | Cal | LLCRM | MB | RChem | RGT | Soil | UST | WP   | WS |
|-----------------|----|-----|-------|----|-------|-----|------|-----|------|----|
| Xylenes, total  | 54 |     | 70    |    |       |     | 40   | 48  | 17   | 31 |
| Ayteries, total | J4 |     | 10    |    |       |     | 40   | 40  | - 11 | JI |

|         |    | LECITI | 110 | 1101 | Juic |  | "" |
|---------|----|--------|-----|------|------|--|----|
| Yttrium | 78 |        |     |      |      |  |    |
|         |    |        |     |      |      |  |    |
| _       |    |        |     |      |      |  |    |

| Z    |    | Cal    | LLCRM     | MB | RChem             | RGT | Soil   | UST | WP            | WS |
|------|----|--------|-----------|----|-------------------|-----|--------|-----|---------------|----|
| Zinc | 56 | 78, 79 | 66,<br>67 |    | 60, 61,<br>62, 63 |     | 38, 45 |     | 14, 20,<br>22 | 26 |





| <b>A</b> –           | 4-AAP<br>A2LA<br>AE                                     | 4 - Aminoantipyrene American Association for Laboratory Accreditation Air & emissions                                                                                                                                                                                                                                                   | N      | NELAC<br>NELAP<br>NIST<br>NPDES<br>NQA<br>NTU  | National Environmental Laboratory Accreditation Conference National Environmental Laboratory Accreditation Program National Institute of Standards and Technology (U.S.) National Pollutant Discharge Elimination System National Quality Assurance Nephelometric turbidity unit |
|----------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В                    | BCH<br>BOD<br>BTEX                                      | Benzene hexachloride Biochemical oxygen demand Benzene, toluene, ethylbenzene, and xylenes                                                                                                                                                                                                                                              | 0-     | Q                                              |                                                                                                                                                                                                                                                                                  |
| С                    | CALA CFU CLP COD CofA CRDL CRM CVAFS CVAA CWA           | Canadian Association for Laboratory Accreditation Colony-forming unit Contract laboratory program Chemical oxygen demand Certificate of analysis Contract required detection limit Certified reference material Cold vapor atomic fluorescence spectroscopy Cold vapor atomic absorption Clean Water Act                                | 0<br>P | OES PAH PC units PCB pci/kg PE pg PT PUF       | Optical emission spectrometry  Polycyclic aromatic hydrocarbons  Platinum-cobalt  Polychlorinated biphenyls  Picocuries per kilogram  Performance evaluation  Picogram  Proficiency test(ing)  Polyurethane foam  Quality control                                                |
| D-                   | F                                                       |                                                                                                                                                                                                                                                                                                                                         |        | QR                                             | QuiK Response                                                                                                                                                                                                                                                                    |
| D                    | DBCP<br>DI                                              | Dibromochloropropane<br>Deionized                                                                                                                                                                                                                                                                                                       | R-     | T                                              |                                                                                                                                                                                                                                                                                  |
| E                    | EDB<br>EDD<br>ELAP<br>EPA                               | Ethylene dibromide also known as 1,2-Dibromoethane<br>Electronic data deliverable<br>Environmental Laboratory Accreditation Program<br>Environmental Protection Agency                                                                                                                                                                  | R      | RCRA<br>RDX<br>RM<br>RTU                       | Resource Conservation and Recovery Act<br>Research department explosive (an explosive nitroamine)<br>Reference material<br>Ready-to-use                                                                                                                                          |
| F                    | EPTIS<br>ERA<br>FAQ<br>FID<br>FoPT                      | European Proficiency Testing Information System Environmental Resource Associates Frequently asked question Flame ionization detector Field of Proficiency Testing                                                                                                                                                                      | S      | SCC<br>SDWA<br>SGT HEM<br>SI unit<br>SPE<br>SU | Standards Council of Canada Safe Drinking Water Act Silica gel treated hexane extractable materials International System of units Solid-phase extraction Standard units                                                                                                          |
| <b>G –</b><br>G<br>Н | GC HCH HEM HMX HPC HPLC                                 | Gas chromatography  Hexachlorocyclohexane  Hexane extractable material  Nitroamine high explosive  Heterotrophic plate count  High performance liquid chromatography  Ion chromatography                                                                                                                                                | Ţ      | TCDD TCLP TCP TKN TNI TOC TOX TPH TSS          | Tetrachlorodibenzo-p-dioxin Toxicity characteristic leaching procedure Trichloropropane Total Kjeldahl (kel'dahl) Nitrogen The NELAC Institute Total organic carbon Total organic halides Total petroleum hydrocarbons Total suspended solids                                    |
|                      | ICP<br>IR<br>ISE<br>ISO                                 | Inductively coupled plasma Infrared Ion selective electrode International Organization for Standardization                                                                                                                                                                                                                              | U-     | UCMR<br>UKAS<br>umhos<br>UPLC                  | Unregulated contaminant monitoring rule United Kingdom Accreditation Service Micromhos (measure of electrical conductivity of a solution) Ultra performance liquid chromatography                                                                                                |
| L-<br>L              | LAS<br>LIMS                                             | Linear alkylbenzene sulphonates<br>Laboratory information management system                                                                                                                                                                                                                                                             | ٧      | VOA<br>VOC                                     | Volatile organic analysis Volatile organic compounds                                                                                                                                                                                                                             |
| М                    | MBAS MCPA MCPP MEK MF mg mg/dscm MIBK MOE MPN MRAD MTBE | Methylene blue active substances 2-methyl-4-chlorophenoxyacetic acid Mecoprop (chlorophenoxy herbicide) Methyl ethyl ketone Membrane filtration Milligrams Milligrams per dry standard cubic meter Methyl isobutyl ketone Ministry of the Environment (Ontario) Most probable number Multi-media radiochemistry Methyl tert-butyl ether | Z      | WP<br>WS<br>WWTP<br>Z-score                    | Water supply Wastewater treatment plant Statistical measurement of a score's relationship to the mean in a group of scores                                                                                                                                                       |



#### 4 EASY WAYS TO ORDER

#### 1. Online

www.eragc.com

#### 2. Phone

800-372-0122 303-431-8454

#### 3. Fax

303-421-0159

#### 4. Mail

ERA 16341 Table Mountain Pkwy Golden, CO 80403

#### Hours

6:00 am - 6:00 pm (Mountain Time) Mon-Thurs 6:00 am - 5:00 pm (Mountain Time) Friday

#### **Credit Cards**

ERA accepts MasterCard, VISA, American Express, and Discover.









#### INTERNATIONAL

For international orders, please contact your authorized ERA Sales Partner. For a complete list of ERA Sales Partners, visit us online at www.eraqc.com

#### TERMS AND CONDITIONS

## Confirmation (U.S.)

All orders are confirmed to the purchasing contact as long as fax or email information is provided. Please review the confirmation immediately to ensure the accuracy of your order.

## Terms (U.S.)

Terms are net 30 days. Freight charges are prepaid and added to the invoice. A \$10 charge is added to each invoice per shipment to cover regulated materials packaging and handling.

## Fast Two-day Shipping (U.S.)

For quick and reliable delivery, all orders are shipped via two-day delivery service unless otherwise requested.

#### International Terms

Orders for environmental products ship from the ERA facility in Golden, Colorado. Orders from outside the United States must be pre-paid in U.S. dollars by either credit card or wire transfer. A \$25.00 bank wire transfer fee is assessed with all payments made through a wire transfer. Customer is responsible for all duties, taxes, and customs clearance.

#### Safety

ERA products may be hazardous and are intended for use by professional laboratory personnel trained in the competent handling of such materials. Responsibility for the safe use of ERA products rests entirely with the purchaser and user. If you need a Safety Data Sheet (SDS) for any ERA product, please visit www.eraqc.com or call +1 800-372-0122 or +1 303-431-8454.

## Return/Replacement Policy

Please check all orders immediately upon receipt for accuracy and to ensure that there is no damage. ERA will immediately correct any problems that are reported within five working days of receipt.

NO OTHER WARRANTY, WHETHER EXPRESS OR IMPLIED, IS MADE WITH RESPECT TO THE PRODUCTS AND/OR SERVICES. ERA EXPRESSLY EXCLUDES THE IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE. ERA SHALL NOT BE LIABLE FOR CONSEQUENTIAL, INCIDENTAL, SPECIAL OR ANY OTHER INDIRECT DAMAGES RESULTING FROM ECONOMIC LOSS.













No. 4604

ERA products manufactured at the Golden, CO facility are accredited to ISO Guide 34, ISO 17025 and ISO 17043, as defined by the Scopes of Accreditation, by American Association of Laboratory Accreditation (A2LA) and the Golden, CO facility is registered to ISO 9001:2008 by National Quality Assurance (NQA).

#### **ERA**

16341 Table Mountain Pkwy Golden, CO 80403 U.S.A. T: 800 372 0122 (or) 303 431 8454 F: 303 421 0159

#### **ERA**

Stamford Avenue Altrincham Road Wilmslow, SK9 4AX United Kingdom T: 44 (0) 161 946 2777

www.eraqc.com



THE SCIENCE OF WHAT'S POSSIBLE.®

Waters, ERA, and The Science of What's Possible are trademarks of Waters Corporation. eDATA is a registered trademark of ERA, A Waters Company. QuiK Response is a trademark of ERA, A Waters Company. All other trademarks are the property of their respective owners.